JOURNAL OF

T TT™T TS\ 7 |
Journal of Geometry and Physics 11 (1993) 129-154 GEOMETRY ano
North-Holland PHYSICS

The algebraic structure of cohomological field theory

Danny Birmingham !
CERN, Theory Division, CH-1211 Geneva 23, Switzerland

Mark Rakowski?

Institut fiir Physik, Johannes-Gutenberg-Universitit,
Staudinger Weg 7, W-6500 Mainz, Germany

The algebraic foundation of cohomological field theory is presented. It is shown that
these theories are based upon realizations of an algebra which contains operators for both
BRST and vector supersymmetry. Through a localization of this algebra, we construct a
theory of cohomological gravity in arbitrary dimensions. The observables in the theory are
polynomial, but generally non-local operators, and have a natural interpretation in terms of a
universal bundle for gravity. As such, their correlation functions correspond to cohomology
classes on moduli spaces of Riemannian connections. In this uniformization approach,
different moduli spaces are obtained by introducing curvature singularities on codimension
two submanifolds via a puncture operator. This puncture operator is constructed from a
naturally occurring differential form of co-degree two in the theory, and we are led to
speculate on connections between this continuum quantum field theory, and the discrete
Regge calculus.
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1. Introduction

In refs. [1-4], it was shown that a certain vector supersymmetry algebra
was powerful enough to supply a foundation for both cohomological gauge and
gravity theories; the gauge theories could be based on a theory of global vector
supersymmetry, while local vector supersymmetry was the essential ingredient
for gravity. Although a formulation of cohomological gauge theory was already
known [5], an equally satisfactory treatment of gravity was elusive, for various
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attempts see refs. [6—17]. In particular, a set of observables for gauge theory was
available [5], and their geometric significance in terms of the universal bundle
of Atiyah and Singer [18] was understood [19-22]. Moreover, it was clear that
the observables corresponded to cohomology classes on moduli spaces of gauge
connections.

It was observed in ref. [ 1] that the underlying algebra of cohomological gauge
theory contained a global vector supersymmetry operator, in addition to the
known BRST symmetry [5]. This led to an algebraic understanding of the de-
scent equations defining the observables, and indicated the generalization to a
theory of cohomological gravity. By looking for realizations of a local vector
supersymmetry algebra, a multiplet was obtained that was generic to all dimen-
sions [2]. This multiplet does not contain an independent spin connection, and
one should not regard this formulation as a “gauge theory” approach to topo-
logical gravity. The construction of observables is, nevertheless, entirely natural
and parallels in many ways the old results for gauge theory. In particular, there
is a natural interpretation in terms of the curvature of a universal bundle for
gravity. The observables are polynomial, but generally non-local operators. Such
a vector supersymmetry was already observed and exploited in dimension two
[23].

Here, we first review the necessary details of the bundle of frames approach
to superspace [24]. This provides a unified picture for treating realizations of a
global, or local, vector supersymmetry algebra. The basic multiplet and symme-
tries of cohomological gauge theory are shown to be encoded in this superspace
formalism by a particular choice of covariant torsion and curvature constraints
[1]. The generalization to gravity is then presented, and the minimal multiplet
and observables are obtained [2]. We go on to show how these theories natu-
rally lead one to a uniformization approach to various moduli spaces. While the
action for these models describes flat Riemannian connections, the theory also
contains a differential form of co-degree two which can be used to introduce
curvature singularities on codimension two subspaces. These puncture opera-
tors are essentially Wilson lines for theories in three dimensions, and generalize
to Wilson “surfaces” in four dimensions. The relevant diffeomorphism group
in these theories is one which fixes the tangent space on the punctures. This
approach, which is entirely suggested by the continuum field theory, hints at a
strong link with Regge calculus [25], and we present some speculative remarks
in this direction. The uniformization approach to cohomological gauge theory
is also briefly discussed.
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2. Bundle of frames on superspace

We will be interested in constructing realizations of a certain supersymmetry
algebra, and here we will appeal to superspace techniques. The advantage of
this approach is that supersymmetry transformations can then be interpreted as
general coordinate transformations of an underlying supermanifold. The case
at hand dictates that our superspace be locally parametrized by the coordinates
z4 = (x#,0% 0), where x* is used to denote the Grassmann even coordinates,
while 8¢ denotes an equal number of odd coordinates and @ is reserved for an
additional odd BRST coordinate. Notice that we use lower case Greek indices
from the beginning of the alphabet to label the odd coordinates, while those from
the middle label the even directions; a capital Greek index denotes generically
any of the coordinates.

Over a supermanifold, we can consider a bundle of orthonormal frames by
analogy with the familiar construction in conventional geometry [24]. We let
h4 = dz4h%" denote such a frame which clearly generalizes the notion of
vielbein. The structure group of this bundle is the Lorentz group, and while the
formal aspects of the theory are independent of the metric signature, we will
mainly be interested in the Euclidean case of O(n), where » is the number of
even coordinates. An index Ay, By, ... 1s used to denote the horizontal directions
in the bundle, and objects with these labels transform in definite representations
of the structure group,

Dah™ = fi h®, ()
where D, is a generator and satisfies the Lie algebra
[Dag: D3] = 5% Dey.- (2)

We will use a lower case Latin index from the beginning of the alphabet to
denote an odd “flat” direction, and those near the middle (/, j, k,...) for an
even direction. Notice also that the A4y subscript labels vertical directions in
the bundle. As in supergravity, the even labels transform as vectors under the
Lorentz group, f; . = f{,,; = 39/,0,),. However, instead of the 4¢ transforming
as spinors, we will require them to also transform as vectors. This is simply
because we seek to realize a Grassmann odd vector symmetry.

We will also need to introduce a spin connection in this bundle, which we

denote in local coordinates by hf‘), and form the covariant derivative
Dgy=04—h{Dy,. (3)

The spin connection, together with the frame fields, allows us to define both
curvature and torsion, and in our conventions take the form

[D4,Ds} = —R{$Dy,, (4)
Tir = Dahf — (1) Dshh (5)
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It is straightforward to incorporate a Yang-Mills connection into this picture
and consider a bundle whose structure group is a product of O(n) with a compact
group G. In this case, the label Ay will denote both of the vertical directions, and
when we need to specify more precisely, we will use Ay = [rs] when referring
to a O(n) direction, and 7, J, K, ... for the group G. It is also conventional to
denote the spin and Yang-Mills connections respectively by h/[,”] = wE,’S] and
hl = Al, and R!; = F! for the Yang-Mills curvature.

The supervielbein also allows one to relate objects with curved and flat indices
(note that we reserve 0 for a flat BRST index),

D, = hleAl = hZD, + tha + /’lfIDg,

RIS = (~)PERBRS R

A1 ¢ 1\B1Z B Ciop A
Ti = (CDRERBRS T, (6)
and the entire algebraic picture can be cast very compactly as
[DAaDB} =FBC:4DC’ (7)
C c C C B B
where Fg!, = Tp', Fp® =Ry, Fp'\ = fBolAl’ and so on.

The Bianchi identities follow from the super Jacobi identity which represents
the associativity of the differential operators, and with these conventions they
take the form

AB D E, D E D
0= Z (=1)7™ [DAITBllcl - TCllAt TBllEl + RC(:/‘leo;;l 1,
(cyclic)
A B D Ei  pD,
0= Z (=D~ I[DAlRB?Cl - T(VIIAIRB:)EI 1. (8)
(cyclic)
The sum here is over the three cyclic permutations of the lower indices.
The convenience of this whole approach is really encoded in the transforma-
tion properties of the fields we have introduced; everything is based on general
coordinate and tangent frame rotations in the superspace. For example, con-

sider a general coordinate transformation on the tangent frame; the components
transform simply as

Ay oz% 4,
h/l (Z ) = (‘)Z—l/lhz (Z) (9)
In its infinitesimal form, where z2 = z'2 + €%, we have the equally familiar
expression
Shit = Wj(z) - hy' (2)
= e Oshy + (947 ) by (10)

It will be convenient to rewrite the transformations of the fields in terms of an
equivalent set of parameters. If we define €1 = ¢ZA$', then it follows simply
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from our definitions that the above general coordinate transformation can be
written as

Shi = Dyt —hB O Th . 4 Tl fly nB (1)

Notice that the last term here has the form of a local frame rotation with param-

eter €% wgf’. If we now redefine the parameter for local frame rotations by

edo — o — T (12)

we can then write the complete transformation properties of the tangent frame
as

Shyl = Daet — hiteC Fylio. (13)

The transformation properties of the spin connection follow in a similar way,
and we can represent the algebra of all the local symmetries in the theory in the
very compact form

ohi = Dyt —hBeCFS
SFf- = ¢EDpFj-. (14)

Note that A, B, ... with no subscript denotes either a vertical or horizontal di-
rection.

The gravitino field 4 is sometimes more conventionally denoted by . The
spin connection of course enters into the algebra (14), however, it is not an
independent field as it can generically be expressed in terms of the vielbein and
the torsion component T;V. In our construction of vector supergravity, this tor-
sion component will vanish, and we will effectively be considering Riemannian
connections.

The superspace we have constructed here mirrors the standard formulation
used in conventional supergravity [26,27]. Other essentially equivalent ap-
proaches can be found in numerous books dealing with supergravity, e.g. ref.
[28], and one will be able to quickly reproduce our results in any of these sys-
tems.

3. Cohomological gauge theory

In cohomological gauge theory, it was known that a certain set of fields, to-
gether with their BRST transformations, formed a basis for the theory [5]. A
geometrical understanding of these fields finds a natural place within the univer-
sal bundle construction of Atiyah and Singer [18]; this was observed by several
groups [19-22]. In addition, it was shown that a vector supersymmetry operator
played an important role in these models [1,3]. The term vector supersymme-
try simply indicates that the infinitesimal parameter in the transformations (or
equivalently the operator which generates these transformations) is a Grassmann
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odd vector. The aim here is to show how these fields, and their transformations,
can be encoded in the superconnection formalism. When phrased as a problem
in superspace, the task is to find a covariant solution to the Bianchi identities of
the previous section. Indeed, we shall find that the basic set of fields furnishes
a realization of the global BRST-SUSY algebra.

To begin, let us specify the BRST symmetry transformations; we have [35]

Syl = seDig,
sl = 0. (15)

The statistics and ghost numbers of (A,, y;, ¢) are given by (+,—, +) and
(0,1, 2), respectively. It is an easy task to verify that the corresponding algebra
closes up to a Yang-—Mills gauge transformation with parameter ¢, that is,

[SprsT (€1),OprsT (€2)] = dym (¢! = —€162¢7). (16)

In addition, we can also define the following vector supersymmetry transfor-
mations [1]:

54} = 0,
51/// = Ea(sé.P‘jI[’
sl = 2¢3lyl. (17)

The resulting algebra takes the form

[dsusy (€%),0prsT(€)] = JOpiFr (€' = Siee?),
[dsusy (€§),dsusy (€2)] = 0. (18)

It 1s clear at this point that the entire formalism is covariant with respect to the
Yang-Mills gauge symmetry. Constructions such as this, where the BRST oper-
ator is nilpotent up to a certain gauge transformation, are called “equivariant”.
Our task is therefore to establish whether this algebra can be embedded in the
superconnection framework that was described earlier.

Since the symmetries on hand are of a global nature (both ¢ and ¢% being
constant), we initiate our search by demanding that the vielbein describes a flat
geometry, hfl = 5;. Furthermore, the potential gauge fields for the SUSY and
BRST symmetries are taken to be trivial, hz = 0, hz = 0. It remains to determine
the appropriate set of curvature and torsion constraints. The fundamental torsion
constraints are immediately specified by the algebra of interest, namely (16) and
(18), and we thus find only one non-vanishing component

a

This is analogous to the fundamental torsion constraint 7/, = y!, in standard
supersymmetry, where the lower indices here denote spinor directions. Equation
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(16) also dictates the curvature constraint,
Fly = ¢'. (20)
Finally, re-writing (15) for the Yang-Mills connection in the form (14),

0.4l = Due! — hyeFiy — hieFly — he'Ff, (21)

one finds the remaining curvature constraint,
Fﬁli = V/I!' (22)

All other curvature components (apart from E-’j) are zero.
The consistency of this set can now be verified through an analysis of the
Bianchi identities (8). In particular, we have the following non-trivial identities

(0ij)': 0 = DoFl + D;F}y,

(aij)': 0 = DuFf,

(00i)' . 0 = 2DgF} + D,Fjp,

(00a)': 0 = DFj, + 26.F},

(Bai)': 0 = DyFy + 6)F},

(860)' . 0 = DyF},. (23)

It is straightforward to check that (23) reproduces the transformations and alge-
bra of the fundamental fields (4, y;, ¢) given above. We have thus succeeded
in obtaining a covariant solution to the superconnection formalism.

One of the most important features of cohomological gauge theory is the con-
struction of a family of metric independent observables. Since the algebra above
is equivariant with respect to Yang-Mills symmetry, these observables are given
by BRST invariant, and Yang-Mills invariant functionals of the minimal mul-
tiplet of fields. From (15), we see that the field ¢ is itself BRST invariant, and
the first observable is formed by taking, for example [5],

wo = Lirg? = LuFj, (24)

where the superscript indicates that it is a zero-form of ghost number four, and
the trace is the usual Yang-Mills trace. Given this initial observable, one can
construct an entire hierarchy of observables by successive applications of the
vector supersymmetry operator [1,3,29]. To this end, one notes that the latter
connects successive components of curvature in the following manner [1]:

dsusy: Foe — Fpi — Fij — 0. (25)

Indeed, as a one-form with ghost number —1, it is naturally designed for this pur-
pose. A tower of differential form operators is obtained by repeated application
of asusyi
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WA(1’3) = 2trF9[F00’
[/V(.z’z) = 4tr(F9,ng.+ %FHHFU)’
= 411‘(F9,’ij + ]“01'1?/(1' + FHkFU)’

=
E<N
S
Il

Atr(FyjFe + Fuckrj + FuFy). (26)

To actually construct the observables, one integrates each of these forms over an
appropriate homology cycle on the manifold M. The verification that they are
BRST invariant, and depend only on the chosen homology class, follows from
a set of descent equations. We defer a discussion of these points to section 3,
where both the gauge and gravity cases can be treated simultaneously.

As we have seen, there are three non-vanishing components of curvature in the
superspace (x#,0% 0), namely, (Fyg, Fy;, ;). Clearly, the sum of these three
pieces represents the entire curvature, F', of superspace, and hence one can form
a characteristic class Tr 2, for example. By construction, the Bianchi identities
ensure that this object is a closed four-form. Furthermore, one sees that the sum
of (24) and (26) is equal to this class. In this way, one obtains a geometrical
understanding of the fields and observables in cohomological gauge theory. In-
deed, the superspace curvature is precisely the curvature of the universal bundle
of Atiyah and Singer, whose construction we now briefly review.

Given a principal bundle P, with structure group G, over a compact smooth
manifold M, one can consider the affine space .4 of all connections on P. This
space 1s acted on by the group G of pointed gauge transformations, and leads
one to the principal G-bundle P x A over Q = (P x A)/G. Since G acts freely
on the base Q of this burdle, the following triplet

Q=((PxA)G.G,Q/G=MxA/G), (27)

defines the so-called ‘universal’ (-bundle over the base space M x A/G.

Now, differential forms on M x A/G carry a natural bi-grading, a (p,q)-form
referring to a p-form on M and a g-form on .4/G. Previously, we have used the
term ‘ghost number’ for the ¢ degree. The connection on the universal bundle
can, therefore, locally be written as

A=A + Ao (28)
Similarly, the universal curvature, being a two-form, decomposes as
F = (d + dprst)A + %[AA,AA]
= Foo + Faun + Foo)s (29)

where d is the usual exterior derivative on M, and dgrst its (0, 1) counterpart.
It is clear that the components of the universal curvature have the correct degree
in order to allow them to be identified with the (Fj;, Fy;, Fog) components of
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the superspace curvature. In addition, the covariant solution of the superspace
Bianchi identities dictates precisely the three non-vanishing components of the
universal curvature. As a final remark, we note that in principle one can consider
higher characteristic classes, although for technical reasons they have thus far
not been used in cohomological gauge theory.

By construction, the parameter in the vector supersymmetry transformations is
a constant vector. Therefore, if we wish to define this as a symmetry of the theory
on a general manifold, we encounter the integrability constraint: [D,, D, J¢; =
R, i0€% = 0. Solutions to this constraint are provided in cases where either
the Riemann curvature vanishes, or has zero modes. The (rigid) validity of the
vector supersymmetry is thus restricted to certain manifolds. The natural way to
overcome this integrability constraint is to localize the vector supersymmetry.
Our aim will be to first construct a theory of vector supergravity, and we shall
then find that the coupling to the gauge system follows unhindered.

4. Cohomological gravity

In order to construct a theory of vector supergravity, one begins by allowing
the vielbein A L, and its gravitino 4§ = ;. to be arbitrary; in the present analysis,
we are maintaining the triviality of the BRST gauge field (hg = 0). Including
the gravitino corresponds to localizing the vector supersymmetry, and hence
leads one to a theory of vector supergravity. The crucial step is then to decide on
an appropriate set of covariant torsion constraints. The most promising road to
take, and the one which yields the present solution, is to discard all extra torsion
components which have negative or zero ghost number. We do, however, retain
the T, piece, in order to retrieve the global result in the limit of flat vielbein
and vanishing gravitino. We should stress that the specification of these torsion
constraints dictates the additional fields which are required to complete the
vector supergravity multiplet. Unlike the case of gauge theory, here we do not
know the basic multiplet, and some nimble footwork is needed in order to obtain
a consistent field content. As it turns out, it is also possible to set to zero the five
components Tée, Ty, Ty, Tj"g, and TGHB’ and we will do so in the following. In
ref. [2], another non-minimal solution to the Bianchi identities was presented
which incorporated Teie and T, as independent fields, and one can consider
this larger set of fields as a coupling of a new multiplet to the minimal multiplet.
Since the observables in this extended multiplet are unclear, we will not consider
it here.

Without further ado, let us present the non-vanishing torsion components [2]:

Téa =9, :% = %5(”9751']’ Ti(j" (30)
where ¢;; is antisymmetric in its indices, that is, it corresponds to a scalar field
in the adjoint representation of the Lorentz group. It should be noted that the
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final component in this set, T,‘j, is not an independent field, and can be expressed
in terms of derivatives of the gravitino. A slight note of warning is required in
the use of (30); the / and a indices label different spaces and thus caution must
be exercised accordingly.

At this juncture, one must simply analyze the resulting set of Bianchi identities.
One can regard this formalism as providing a bootstrap approach to obtaining a
solution. Given the above torsion constraints, one examines each of the identities
in turn, and checks for consistency. The non-trivial identities are

(abi)): 0 = Ry,

(a0i)) : 0 = Ry,

(@aij)*: 0= Ry~

0ij)F: 0= Ry,k, — T8 8k,

(00i) : 0 =2T%3,+ Ry’ s

(00a)?: 0 = 6P6]Rye" ; + 2T} 6,

(00i)°: 0 = DeT}h,

(@0i)?: 0 = DTS + 8P6KR,, 7 — 64 T,

(0ij)*: 0 = DgT% + D;TAy,

(aij)t: 0 = DT} + 6067R,; %, (31)

In addition, one finds the non-zero components of curvature (besides RU’S) to
be

rs _ ¢rs, Rmrs — %(&ank _ 5(1[1 k],)éjréks (32)
The transformations of the minimal multiplet are given by
oh, = l‘jé‘;,
Syl = Due® —eh, T,
S = 2695iR,,". (33)
Although the torsion and curvature components T,‘j, ¥, and R; j” are not

independent fields, their transformations are simple expressions, and we record
them here:

5T = —3€eDyig; 0" — €" R, 00y,
IRy, = LeDi¢” — €“8)R,,”,
where the latter two are obtained from the (860:)5, (a@i)", (6ij)", (aij)" iden-

tities in (8). Finally, one can read off the transformation of the spin connection
from (14):
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5w, = —€hiR;". (35)

One can now check that the above multiplet of fields (hL, wi, ") provides a
representation for a BRST-SUSY algebra, with the following closure properties:

[Osusy (€%),dprsT (€)] = Opirr (€’ = Jiee?),
[OBrsT (€1),0BRST(€2)] = OLorentz (€7 = —€,€,0"),
[dsusy (€§), dsusy (€5)] = 0. (36)

In the above, we have only listed the essential part of the algebra; however, given
the full set of torsion and curvature constraints, we can read off the complete
algebra from (7). In the larger non-minimal multiplet that we discussed earlier,
one finds that the BRST-BRST commutator also contains a diffeomorphism and
a local supersymmetry transformation on the right hand side, and this ruins the
simple observable structure of the present theory.

We have thus succeeded in constructing a multiplet for vector supergravity.
Since the solution involves a localization of a vector supersymmetry, one is nat-
urally led to include a vector gravitino yj, which then appears as the BRST
topological shift partner for the vielbein. We are not treating the spin connec-
tion as an independent field; it can be written in terms of derivatives of the
vielbein and its inverse in the ususal way by solving D, h,ﬂ] = 0 for w;;. Sim-
ilarly, the BRST shift partner to the spin connection, Ry, is not independent
and represents a deformation of the spin connection induced from a deforma-
tion in the vielbein. It is straightforward to consider the coupling of the above
gravity multiplet to the gauge multiplet of the previous section, thereby taking
the structure group to be a direct product of the Lorentz group and the compact
group G. By considering the coupled Bianchi identities, now allowing the index
Ag to run over {rs] and I, one finds that the transformations of the gauge mul-
tiplet are unaltered. The only change in the algebra is that one adds the term
dym (el = —€,6,¢7) to the above commutator of two BRST transformations.
In performing this coupling, one overcomes the integrability constraint which
appeared in the gauge theory case.

In the present theory, we again notice that we have a BRST invariant field
¢"; hence, we can form the observable

Wb = Lirg? = Lir R, (37)

where the superscript indicates that it is a zero-form of ghost number four, and
the trace represents an O(n) trace. In the case of 2D gravity, higher powers of ¢
do appear, but for convenience, we restrict our attention to the above example.
As for the case of gauge theory, the vector supersymmetry operator connects
successive components of curvature:

Osusy :  Rgs — Ry — R;j — 0, (38)
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and we arrive at the following assembly of differential forms:

W' = 2tr R R,

= 4tr(Rg;Rg; + 3RgoR;)),

WY = 4tr(ReiRjx + RojRii + RexRij).

Wiﬁ’/o) = 4tr(R;; Ry + Ry Ry + RyRji). (39)

=
(3]
[\]
:
|

It is straightforward to re-write these expressions with either curved indices, or
in differential form notation.

As before, one can construct a characteristic class by forming tr R?, where R
represents the entire curvature of superspace, which in the present case consists
of three non-vanishing components, Rgg, Ry;, R,;. By construction, the Bianchi
identities ensure that this object is a closed four-form. In ref. [18] (see also ref.
[30]), the extension of the universal bundle program to the space of metrics was
outlined, and the curvature of the superspace above represents the curvature of
this universal bundle. Finally, let us remark that an alternative set of observables
presents itself in four dimensions. Using the SO (4) invariant tensor €,,,,s, we
can form the SO(4) invariant operator

W (04) _ %Gmnrsﬁbmn(ﬁrs« (40)

Proceeding as before, one generates a new hierarchy of operators, with the top
form being given by the Euler class, e /'R, Ry;.

5. Observables hierarchies from vector supersymmetry

It has been known for some time that BRST invariance plays an important
role in topological field theory [19,31,32,20]; indeed, the observables in coho-
mological models correspond to BRST cohomology classes, 1.¢., operators which
are BRST-closed, modulo those which are BRST-exact [5]. The observables are
defined via a set of operators W (i = 0,...,n), which satisfy the following
descent equations:

QprstW ) = 0,
QBRSTW“) — dW(O),

OprsTW ") = dWw "1,
0 =dw, (41)
where dprsT = €Ogrst. Here, [ denotes the differential form degree, and d is

the exterior derivative on M we shall omit the ghost number labelling on the
operators. As a consequence of these defining relations, one can now construct a
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set of observables by integrating each of the operators W (/) over an appropriate
homology cycle y;, on M. Defining

wwn:/wi (42)
Yi
we see that it is BRST invariant as a result of (41):
ngwwn=/mwM)=/W““=a (43)
7i 0?1

Furthermore, a simple check reveals that each of these observables depends only
on the homology class of ;. Integrating over a boundary, we find

W0yusn) = / wo = /dW(i)=QBRST / Wi+, (44)
AGsy Y+ Yu+1)

and hence this object is BRST trivial. In practice, the above hierarchy of equa-
tions is initiated by choosing a BRST invariant operator W (*). However, one may
wonder whether the ensuing relations in this hierarchy are merely fortuitous, or
whether they are a result of some more fundamental property of cohomological
field theory.

Let us begin by recalling the essential relations in the BRST-SUSY algebra:

{Dy, Da} = &,Di, (45)
(D4, D;] = 0, (46)
{Da, Dy} = 0, (47)
{Dg, Dy} = RIDc,. (48)

Consider a BRST invariant object W (©); DyW (0 = 0, which is also covariant
with respect to O(n) rotations, and gauge transformations. The superscript in-
dicates the differential form degree; however, in the following we shall present
our results in terms of components. We define

wV = p,w @, w = saph, (49)
If we now act on W (@ with (45) we obtain the following result:
Dw'V = DWW, (50)

It is immediately evident that such a relation is precisely the second step in the
hierarchy of (41). The reason the covariant derivative D; appears, rather than
the exterior derivative as in (41), is simply because our present discussion 1s
more general. We are first considering covariant objects W {); for the purposes
of constructing observables one then specializes to objects which are invariant
with respect to O(#n) rotations, and Yang-Mills transformations. We thus con-
clude that such a pattern is not simply a twist of good fortune, but is a direct
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consequence of the underlying vector supersymmetry algebra [3]. This analysis
can be continued, and one verifies that the construction of the entire hierarchy
(41) is based solely on the three relations (45)—(47). The kth level is obtained
by defining

(k) Fk—1)
Wik = Dy WD,

wh = 50w, (51)
and using (45)-(47) one finds
k) 1 k—1)
DoW,ioy = ey P (52)

For the purpose of illumination, we have chosen to endow the objects W with
flat indices. It is quite straightforward to adopt a curved index notation, or write
these objects as differential forms. For example, let us define

1 137 (1
w = niw . (53)
A little extra care is needed here as the operators Dy, D, do not represent the

symmetries when acting on non-covariant objects such as the vielbein h,",. In this
case, one uses the relation (36), and acting on W ), one finds

QsrstW,") = DWW = (9, — ' Dy~ ALDHW O, (54)
Similarly, the general result is given by
(k) 1 (k—1)
Qorst Wi = 31 Pt W1 (53)

The above derivation of the descent equations which define a cohomological
field theory clearly demonstrates that they have their origin in the vector super-
symmetry algebra. The knowledge that BRST plays a role in these theories is
not a sufficient guarantee for this structure. As we have seen, the BRST operator
is nilpotent up to local O(#) rotations, and Yang-Mills gauge transformations.
In order to construct an observable, one must therefore ensure that the objects
W are invariant with respect to these local symmetries. In practice, this simply
involves taking an appropriate group trace.

6. Field theoretic realization of a universal bundle for gravity

In order to construct a quantum action .S,, we can proceed in the usual way
and take the Lagrangian to be BRST exact [5], namely

S, = / Osrst V, (56)

where V is a Lorentz invariant functional which comprises a sum of terms of the
form antighost (gauge fixing condition). This action is evidently invariant under
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BRST, since, from (36), the BRST operator closes up to a Lorentz rotation.
It is at this point that we must decide on a moduli space of interest, and the
specification of this space corresponds to one of the gauge fixing conditions,
which we shall refer to as the topological gauge fixing. From the definition of the
observables given above, a standard argument reveals that they correspond to
cohomology classes on the moduli space, denoted by M. In particular, a BRST
invariant observable W -4~/ reduces to a closed form on M of degree (4 — i).
The vacuum expectation of a product of observables then has an interpretation
as an intersection number on M, for details see refs. [33,34].

The space of interest here is given by the flat connections, R, = 0. Of course,
compact manifolds which admit flat connections in the euclidean case are rather
rare, and we will later modify this choice by introducing curvature singularities.
The other condition that we need to impose at this point is perhaps more sub-
tle [4]. If we consider the transformation of the spin connection under the
combined shift and local Lorentz symmetries (see (14}),

dw, = €Ry,” + Dye”, (57)

we see that some deformations in the vielbein lead to trivial deformations in
the connection, in the sense that they can be absorbed into a Lorentz gauge
transformation. If we impose the constraint

DRy, =0 (58)

on all such deformations, then — in the absence of zero modes of the Laplacian
when acting on scalars in the adjoint representation — we eliminate these trivial
deformations. Since there is a one-to-one correspondence between scalars in
the adjoint representation and two-forms, namely ¢,, = h;;h,%,— i, the Hodge
theorem shows that the number of such zero modes is equal to the dimension of
the second cohomology group H? (M, R). Here, Bu is the full covariant derivative
defined with respect to the spin and Christoffel connections by

DX} = X! - w, X] - Th, X}, (59)
and the curvature components are given by
Ru”™ = RWR,”, R, = hiRy/". (60)

Although we are not dealing with a theory of an independent spin connection,
we are, nevertheless, interested in some moduli space of Riemannian connec-
tions. While the above conditions are clearly motivated by the construction of
topological gauge theory, there are crucial differences here which simply reflect
the fact that in Riemannian geometry one constructs the connection from the
vielbein (or equivalently, the metric).

To illuminate the structure of this action, we require a little more armoury.
It is straightforward to derive the following BRST-SUSY transformations, see
(33) and (34):
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rs [ i rs
6R,,” = eDu¢"™ — €“5ih! Ry,

SRy = —eDR, )" (61)
In addition, we have
Sh! = —eh!yiSIh 68 = e VBN yid),

,1 9
OTh, = —€hfh, Ry, + € (Duyl)osh?, (62)
where the final transformation is obtained by studying the condition for covari-
ant constancy of the vielbein, namely: D, 4, = 0. We record the BRST variation
of the constraint D* Ry, for future reference,

QBRST(D;tR(;wS) = %52975” - ng/m R(}upq f[[/:H[ptI] - Rgmshzl'lazi T/ilu
+ Rb‘i rsdéﬁll (//ﬁ + hméia gwl Wfﬁ(ﬂ Rz/)(;s‘ (63)

Let us now concentrate our attention on a specific model. In two dimensions,
the vector representation of SO(2) is reducible, so we have automatically N =
2 (the number of gravitinos) vector supergravity. In the present instance, we
choose V' to be: N

V = € xRy + VE ¢DR ", (64)
and therefore we have manifest invariance with respect to Lorentz rotations, and
diffeomorphisms. The symmetries of the minimal multiplet have already been
given, and we need only specify the transformations of the antighosts (x. ),
and their multipliers, which we denote by (B, n). These transformations must
be such that they obey the closure properties of the BRST-SUSY algebra, and
guardntee that the action is invariant under vector supersymmetry. This can be
achieved, and one set is as follows:

5¢ = en,

on = €455 D,

dx = ¢ B+ Le48le/ Do,

0B = eaéé (D,x—%e,ijr]). (65)

For convenience, we have presented the above transformations in flat indices;
we note that the flat and curved epsilon symbols are generally related by

det[hi]ehin = emma ph pia .. (66)

The SUSY transformations of ¥ and ¢ were determined by requiring V' to trans-
form as a total derivative under that symmetry, and the others are then fixed by
closure of the original algebra.

Expanding (56), we obtain
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Sq = / (" (BRyuw + xDuRoe) + VB (1 + hiwi3i6)DuR "

+ VEP(3D*) — RS HYSLTE, + Reii Dyt + W 8108 wiD(uRuy) -
(67)
The first point to note here is that the expansion of the topological gauge fixing
condition generates the second term in (67). One then notices that Ry, itself
behaves as a gauge field, and thus requires gauge fixing. This is effected by the
second gauge fixing in (64).
In order to proceed in dimensions greater that two, one simply replaces y and
B by (n—2)-forms. However, fgr certain purposes it is convenient to introduce
the associated tensor densities B#* and y ¥, defined as follows:

Ry o Hifafy
BAE =€ "By s

g = Mkt (68)

The form of the quantum action which is generic to all dimensions is given by
the action of Qggrst ON

V = (7" Ry + V& $D,R M), (69)

and again we have manifest invariance with respect to both Lorentz rotations,
and diffeomorphisms. However, invariance under vector supersymmetry re-
quires a little extra attention, but can be achieved with the following set of
transformations:

5¢ = en,
on = —Le(¢, 8] + €25ih Dy,
57" = eBM 4 %@e“ééh}”f)"@,
OB = —Le[p, 7] — €0 (D" + LyEY™)), (70)
where
Y, = Dyn + [Rop, #1 — h9w )6} Dod + h7wbS]D,y — h,jwlbs|D°%.  (71)
For the case of three dimensions, we find
So = [P (ByRyw + 2,DyuRurg) + VE 01 + hwisiD)D,R,
+ V& 63D + [Roy, R,* 1 — Ry hY 04T, + RyidiD" yf
+ h'5,g" Wi DRy},
(72)

where we note the presence of the extra commutator term in Ry,.
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One feature that arises here (and in all dimensions greater than two) is that
the y and B fields possess their own local symmetries; in the case at hand, one
finds that S, is invariant under

Oxu =Dy, 6B, = DAY 4 [Ry,, AV ], (73)

where 49 and A are even and odd transformation parameters in the adjoint
representation of the Lorentz group. The closure of the algebra on the x, and B,
fields can be performed, and one again verifies the off-shell nature of this algebra.
We simply note that the [dsysy, dprsT ] commutator defines a diffeomorphism
of these fields, and the remaining algebra proceeds obediently.

We can now make direct contact with the universal bundle for gravity. Inde-
pendent of the particular dimension, we see that the ¢ equation of motion asserts
that the ¢ component of the curvature assumes its expected non-local form:

. n2y-1 ! [rs] rsypu i
¢ = =2(D°) (=R, R N1y = R H{ SuTh,
+ R(}i fSéiB#W: + h”l.éiagl/AWfB(ﬂRy)Hm)- (74)

Furthermore, the middle component Ry, also obeys the necessary horizontality
condition, E#Rg" = 0. This shows that the above cohomological gravity theory
provides a field theoretic representation [4] of a universal bundle for gravity in
any dimension [18,30].

It was observed in ref. [29] that as a consequence of the form of the quantum
action in (56), the theory naturally contains a vector supersymmetry operator.
The energy-momentum tensor obtained from .S, has the form

Ty = {OBrsT> Vi }- (75)

Defining the momentum operator P, and its BRST partner V/,, by integrating
Ty, and Vp, over appropriate spacelike hypersurfaces, one obtains the algebra:

P, = {QOsrsT, Viu}- (76)

Clearly, we can identify V), as the vector supersymmetry operator, and the above
argument indicates that cohomological theories will always contain such a sym-
metry. It was also shown in ref. [29] that the descent equations follow as a result
of the defining relation (76).

The approach we have adopted here is to define cohomological theories at the
algebraic level, independent of any particular model. Indeed, as we have seen,
one can obtain a realization of the BRST-SUSY algebra and define an observable
hierarchy at this level, prior to the specification of any moduli space.

7. Uniformization approach to cohomological gravity

In performing the topological gauge fixing, we restricted ourselves to the con-
dition of flat curvature, R,, = 0. We were able to impose this condition through
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the introduction of a multiplier field B, and the resulting action was observed to
have local supersymmetry. This same differential form B does, however, allow
us to introduce curvature singularities on codimension two submanifolds. This
path was also adopted by Verlinde and Verlinde [23] in two dimensions. In this
way, vector supersymmetry, as well as diffeomorphisms, are broken only along
these punctures. It is important to stress that the algebra (36) is defined at the
equivariant level, in which the local symmetries of Lorentz, diffeomorphisms,
and vector supersymmetry are still manifest. Indeed, we shall adopt the equiv-
ariant approach as a guiding principle for defining the theory. As in any gauge
theory, one should be able to define the action, observables, and path integral
at this level, prior to the gauge fixing of the local symmetries.

For the case of three dimensions, the puncture operator corresponds to a
Wilson loop defined by

Wy (C) =trPexp]{B, (77)
C

where P denotes the path ordering, and C is a closed one-cycle. This operator is
a solution to the differential equation

d
(F+MO)mm) =0, (78)
where
M (1) = By (x(1))x*(1). (79)

To obtain the Wilson loop in (77), we have chosen a closed path C, with x(0) =
x(2m), and taken a Lorentz trace. Inserting a product of these operators in the
path integral measure leads to a modified equation of motion for the B field. We
find that the resulting moduli space is given by flat Riemannian connections,
with deita function singularities defined along the codimension two punctures.
One can thus view the above analysis as a uniformization approach to different
moduli spaces. The vacuum expectation values of the observables presented in
section 5 will then correspond to cohomology classes on these moduli spaces.
In dimension greater than three, one notes that the puncture operators become
Wilson “surfaces”.

Since we are working at the equivariant level, we must ensure the BRST,
and Lorentz invariance of the functional measure. The Wilson loop is clearly
invariant with respect to the latter symmetry, while we see from (70) that it
is only BRST invariant if we restrict the ¢ field to vanish along the loop C.
Specifically, we have the following formula for a general variation of the puncture
operator [35]:

2r 2n
dtrP exp/M(r)dr = /dz tr{dM ()W [2n,t1W[t,0]}, (80)
0 0
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where

b
Wlb,al = Pexp/M(t)dt. (81)

From (70), the BRST variation is given by
QprsTM (1) = ~ L[ xu]x¥, (82)

and the simplest option, and the only one we will consider here, is to demand
that ¢ vanish on C, in order to achieve BRST invariance of the puncture inser-
tion. Moreover, the very presence of the puncture insertions dictates the relevant
diffeomorphism group of the theory to be one which leaves fixed these codimen-
sion two submanifolds. As a result, the local vector supersymmetry is similarly
restricted, and one notes that the local B, and hence y, symmetries are also
broken on the punctures.
The correlation functions of the theory are defined by

k r
Z(o i G GO = [N [ W@ e [T W0, (83)

i=1 j=1

where @ denotes the collective field content. In order to obtain a non-vanishing
result, one must ensure that the ghost number of the correlator equals the dimen-
sion of the moduli space under discussion (or equivalently, the ghost number
anomaly). The generic situation in cohomological models is one in which there
are ghost zero modes; this may result in a net ghost number violation in the
path integral measure, and hence to a ghost number anomaly. As we have seen,
the observables have positive ghost number, and hence in the presence of the
anomaly one inserts a collection of observables whose total ghost number equals
the anomaly. At the level of differential forms on moduli space M, this translates
into the condition that the total ghost number of the observable be equated with
the dimension of M.

With this restriction on the ¢ field, we should re-examine the 0- and one-form
observables given above. It appears that the first observable becomes trivial in
the presence of puncture insertions; this follows from the fact that as a result
of the descent equation (41), the observable is independent of its position, and
hence one can always move it to a point on the puncture where ¢ vanishes.
This simple argument assumes, of course, that there are no subtleties involved
in placing ¢ on the punctures. However, the case for the one-form W (13 re-
quires closer attention. In this regard, we note that the variation of W (C) with
respect to an infinitesimal variation of the loop is equal to a BRST commutator.
Explicitly, we have

oM (1) = 6x* (9, B,)x* + B,,%éx“, (84)
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and hence

oWp(C)

fl

2n
/dt tr{ (BuB,| + [Bu B, 16X X W27, 1]W[1,0]}
0

2n
QBRST(/tr{DB[#xl,]éx”X”W[Zn, []VV[[,O]}), (85)
0

where the latter step is achieved by restricting ¢ to vanish on C. In the above, we
have defined a ‘covariant’ derivative with respect to B, namely Dg, ), = Oux., +
[B., xv]. This establishes the fact that the puncture insertions are invariant
under small deformations of the loop. Nevertheless, it is possible to examine
the one-form observable for a homology cycle which is not homologous to the
puncture loop, and such an observable may well be non-trivial. The issue of
whether there is a ghost number anomaly in three dimensions — which is essential
if one is to compute nonzero values for observables other than the partition
function - will be considered in the next section along with the gauge theory
construction.

It is worth making a few remarks on the situation in two dimensions. Since the
rotation group in this case is Abelian, the BRST operator acting on a field in the
adjoint representation is nilpotent at the equivariant level. Consequently, the B
field is BRST invariant, (see (65)), and one does not encounter a restriction
on the ¢ field; in addition, the puncture operators are independent of their
positions. Indeed, it has been shown that the zero-form operators do, in fact,
correspond to cohomology classes on the moduli space of punctured Riemann
surfaces [33,34,23].

Of course, in order to fully define the path integral, one must proceed with
the gauge fixing of all the local symmetries. This leads to a total BRST oper-
ator which is obtained by replacing all the local parameters by the old BRST
parameter €, times the corresponding ghost field. One then introduces suitable
gauge fixing conditions to break diffeomorphisms, frame rotations, and local
vector supersymmetry. In dimension greater than two, one must also break the
B and y local invariances. In this way, the action (67) or (72) is bedecked
with the full tapestry of ghost and multiplier fields. Suffice it to say at this point
that the entire field content is such that to each Grassmann even field, one has a
Grassmann odd partner of identical field type. In addition to the fields (4!, Vi),

and (q&",ars, n"), one generically requires three sets of (ghost, antighost, mul-
tiplier) fields. These are given by (¢!, ", b"), (c%,¢%, b%), (¢"5,7",b"). Respec-
tively, these are present for the diffeomorphism, vector supersymmetry, and
local Lorentz invariances. Thus, one sees that the diffeomorphism ghosts cancel
against the supersymmetry ghosts, while the Lorentz ghosts play host to the sec-
ond stage ghosts (¢, ¢). Additionally, the ghosts for the B and x symmetry form
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a supersymmetric set. It is clear that by gauge fixing all the local symmetries, one
will obtain a total BRST operator, Qa1 which is nilpotent. One then has the
freedom to choose the Lagrangian to be exact with respect to either the original
QOgrst as in (56), or the complete Qa1

We present here the @, transformations of the fundamental multiplet; this
can be read off from (33) and (14):

Shi = e(Dyc' + 8Lyl + o hk),

"
Oyl = €(Duc® = hiTS + ' T2hi + 688y, w1,
9" = € (2c70,Ry," + ¢'Did” — [¢,0]™). (86)

Nilpotency then dictates the following ghost transformations:
dc' = e(—6ic" + CijCj)
Sc = e{-L(p+ [ ”—CkR + Lele "R, Uy,
oct = 6(—35,%)”61 + 5,-“ckch9k” + 38t ). (87)

The condition that the symmetries are broken on the codimension two punc-
tures is encoded in the path integral by restricting the relevant ghost fields to
vanish along these punctures. It is worth remarking that once the full BRST
operator is obtained, a new BRST invariant B field can be constructed. This is
achieved by shifting the old B field by certain ghost terms. Therefore, having
fully gauge fixed the theory, one no longer sees the restriction on the ¢ field,
nor on the diffeomorphism group. As mentioned previously, a necessary conse-
quence of the equivariant point of view is that in order to implement curvature
singularities, one is forced to restrict the ¢ field on the punctures.

8. Uniformization approach to gauge theory

Having discussed the uniformization approach to defining cohomological
gravity, it is useful to return to the gauge theory situation. In particular, let us
examine a gauge theory in three dimensions; this model is known as a super-BF
system [36,22], and it has been established that the partition function yields the
Casson invariant [36]. Let us first describe the general features of this system;
the BRST-SUSY transformations are as follows [1]:

0Ay = €W, 0wy = €Dy + €"F 86 = 2e'y,,
3¢ = enon = —Leld, @l + €"Dud. 0y = € By + 3€€,,"D o,
0B, = —teldoxul — €"{Dy + 2w’ (Don + LW, 01D}, (88)

where w, = d/y;, and e# = ;0,7 Tt is straightforward to check the closure of
the associated algebra [1].
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The quantum action for this theory can be written as [36,22]
Sg = / Oprst tr(€” 2, Fuy + ¢Duy*), (89)
which, upon expansion, becomes
S = [ e (ByF — D) + nDw* + 5D+ W w )] (90)

It is easy to verify invariance with respect to global vector supersymmetry trans-
formations, while the BRST symmetry is manifest. In addition, one finds invari-
ance with respect to the following B and y gauge transformations:

Oxu = DyAW, 6B, = DAY + [y,, 4], (91)

where 4@ and A‘Y are gauge parameters in the adjoint representation of G.
It is worth noting the BRSY-SUSY algebra closes on y and B in the following
manner:

[Osusy (€”),0BrsT(€) 1Xu = €€"Dyxy + Dy(—€€”x,),
[dsusy (€”),0prsT(€) 1By = €€"D, B, + D, (—€c"B,) + [y, —€€”x ]
(92)

In other words, the SUSY-BRST commutator closes up to a translation and a
local B — x gauge transformation.

The above field theory, like any other cohomological gauge theory based upon
this multiplet, provides a field theoretic representation of the universal bundle of
Atiyah and Singer [18]. Specifically, one notes from the ¢ equation of motion
that the non-local structure of the ¢ component of the universal curvature is
dictated to be:

¢ = =2(D*) " [yu w*]. (93)
In addition, the # equation of motion ensures that y obeys the required hori-
zontality condition D - v = 0. These are exactly the formulae obtained in the
analysis of Atiyah and Singer.

In order to consider the observables in this theory, we note that the net ghost
number violation is zero. It appears therefore that any observable, beyond the
partition function, vanishes. This feature arises precisely in three dimensions
because of the fact that the antighost x, is a one-form of ghost number —1, and
satisfies the same equation as y,. Therefore, the number of y zero modes will
equal those of . Furthermore, the multiplier fields enforcing the gauge fixing of
both ¥ and y will also have identical zero modes, and one finds that the ghost
number anomaly is absent.

One can also adopt the uniformization approach to topological gauge theory.
In three dimensions, the theory naturally provides a one-form field B, in the
adjoint representation of (G, and we can then consider the associated Wilson
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loop (77), with a G trace replacing the Lorentz trace. As before, the presence
of this puncture operator modifies the moduli space condition to be one of flat
gauge connections, with curvature singularities defined along the codimension
two punctures. We also see that the BRST invariance of the puncture operator
requires the vanishing of ¢/ along the loop C. As long as G is non-Abelian, this
will be the case in any dimension; additionally, the B and y local symmetries
will also be broken on the punctures.

Unfortunately, it appears that the presence of these punctures does not over-
come the absence of a ghost number anomaly. Since ¢ vanishes on the punctures,
and the y symmetry is also broken there, one sees that the gauge fixing for both
the ¢ and y symmetry is identical, and hence their respective multiplier fields
will be restricted in the same way. Nevertheless, the partition function for the
case of flat connections with singularities defined on codimension two punctures
is certainly worthy of attention.

Let us note that one can complete the identification with the universal bundle
by performing the gauge fixing of the Yang-Mills symmetry. The transformations
of the minimal multiplet now take the form

0A, = e(wy + Dyc),
(5‘///1 6(%Dﬂ¢)_[cﬂl//ﬂ-])+€yFl/ﬂa
0p = —€[c, 9] + 2¢ky,, (94)

where ¢ is the Yang-Mills ghost; nilpotency of the resulting BRST operator
specifies the following transformation for this ghost:

dc = —1e(d + [c,c]) + €4, (95)
The algebra is now given by
[dsusy (€#),0prsT(€)] = €€ 0y, (96)

Once we have introduced the ghost field, we must specify its variation under
global vector supersymmetry, and in order to achieve closure of the algebra, this
dictates the above transformation. The interesting point here is to note that the
vector supersymmetry operator behaves as a shift operator connecting the two
components of the connection of the universal bundle, see (28):

5SUSY: c— A—- 0. (97)

Returning to the issue of the ghost number anomaly, we find that the situation
in gravity is somewhat more involved, since Ry, is not an independent field in
the theory. As we have seen, it represents a deformation in the spin connection
which is consistent with the no torsion constraint. In addition, the gravitino ! 18
the gauge field for local supersymmetry, and this has no counterpart in the simple
gauge theory setting. Even in three dimensions, where ;' and y;’ = €™ 34 Wi
have the same index structure, these two fields are of different geometrical type.
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The ghost number anomaly in this formulation of cohomological gravity requires
a more careful treatment, and we will not undertake that here.

9. Outlook

We have presented an algebraic foundation for both cohomological gauge and
gravity theories. The gauge theories are based on a certain global vector super-
symmetry, while local supersymmetry turns out to be the essential ingredient
in the gravity models. Our construction is, moreover, generic to all dimensions.
Adopting a uniformization approach, where curvature singularities are imple-
mented on codimension two punctures, is natural within this framework.

In the 3D gravity model, it would be interesting to develop the theory on
manifolds with boundary. The boundary components are Riemann surfaces, and
one knows that here there are observables which correspond to the Mumford
invariants. The role of the three dimensional theory in interpolating between the
boundary components needs to be elucidated. For 3D gauge theory, the partition
function in the presence of puncture insertions has not been studied. Whether
it represents an interesting extension of the Casson invariant is an open issue.

It is known that one can triangulate any manifold in such a way that the
Riemann curvature is everywhere vanishing, except for singularities defined on
submanifolds of codimension two. With this knowledge, a discrete Regge version
of the theory might be constructed. The fact that a form B, of co-degree two,
is naturally provided in the continuum cohomological theory, suggests that it
may well be possible to actually compute the observables of the theory through a
discrete Regge analysis. An important observation in this regard is the fact that
all the fields in the cohomological model are differential forms, either even or
odd, of varying degree. Moreover, one sees that a “fermion” doubling problem
will not arise for the Grassmann odd forms [37]. One might envisage a thorough
Regge analysis of the two dimensional model without recourse to conformal field
theory, or topological methods [23,33,34]. Our prime concern is, however, the
study of cohomological gravity in higher dimensions, and the formulation we
have presented here provides a foundation for pursuing this objective.

As an alternative to the uniformization approach adopted above, one can also
construct invariant actions for a variety of different moduli space conditions.
The details of this construction are presented in ref. {38], and the important
point to note here is that the actions preserve all the symmetries present at the
equivariant level. In particular, invariance with respect to local vector super-
symmetry can be achieved by choosing the constraints which define the moduli
space and its deformations to form a supersymmetric set. Models for four dimen-
sional self-dual gravity (R}, = 0), and two dimensional gravity with constant
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scalar curvature (R = A) are treated, as well the moduli space of solutions to
the equation (D#R,, = 0), in any dimension.
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