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The algebraic foundation of cohomologicalfield theory is presented.It is shownthat
thesetheoriesare basedupon realizationsof an algebrawhich containsoperatorsfor both
BRST and vector supersymmetry.Through a localization of this algebra,we construct a
theory of cohomologicalgravity in arbitrary dimensions.The observablesin the theory are
polynomial,but generallynon-localoperators,andhavea naturalinterpretationin termsof a
universalbundle for gravity. As such,their correlationfunctionscorrespondto cohomology
classeson moduli spacesof Riemannianconnections.In this uniformization approach,
different moduli spacesareobtainedby introducingcurvaturesingularitieson codimension
two submanifoldsvia a punctureoperator.This punctureoperatoris constructedfrom a
naturally occurringdifferential form of co-degreetwo in the theory, and we are led to
speculateon connectionsbetweenthis continuum quantum field theory, and the discrete
Reggecalculus.
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1. Introduction

In refs. [1—41,it was shownthat a certain vector supersymmetryalgebra
was powerfulenoughto supplyafoundationfor bothcohomologicalgaugeand
gravity theories;the gaugetheoriescould bebasedon a theoryof global vector
supersymmetry,while local vectorsupersymmetrywas the essentialingredient
for gravity. Althougha formulationof cohomologicalgaugetheorywasalready
known [51,an equallysatisfactorytreatmentof gravity was elusive,for various
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attemptsseerefs. [6—171. In particular,a setof observablesfor gaugetheorywas
available [5], andtheir geometricsignificancein termsof the universalbundle
of Atiyah andSinger [181was understood[19—221.Moreover, it wasclear that
the observablescorrespondedto cohomologyclasseson moduli spacesof gauge
connections.

It wasobservedin ref. [11 that the underlyingalgebraof cohomologicalgauge
theory containeda global vector supersymmetryoperator, in addition to the
known BRST symmetry [5]. This led to an algebraicunderstandingof the de-
scentequationsdefining the observables,andindicatedthe generalizationto a
theory of cohomologicalgravity. By looking for realizationsof a local vector
supersymmetryalgebra,amultiplet was obtainedthatwas genericto all dimen-
sions [2]. This multiplet doesnot containan independentspin connection,and
oneshould not regardthis formulationas a “gaugetheory” approachto topo-
logical gravity.The constructionof observablesis, nevertheless,entirelynatural
andparallelsin many waysthe old resultsfor gaugetheory. In particular,there
is a natural interpretationin termsof the curvatureof a universalbundlefor
gravity. Theobservablesarepolynomial,but generallynon-localoperators.Such
avectorsupersymmetrywas alreadyobservedandexploitedin dimensiontwo
[23].

Here,we first reviewthe necessarydetailsof the bundleof framesapproach
to superspace[24]. Thisprovidesa unified picturefor treatingrealizationsof a
global, or local, vectorsupersymmetryalgebra.The basicmultipletandsymme-
triesof cohomologicalgaugetheoryareshown to be encodedin this superspace
formalismby a particularchoiceof covarianttorsionandcurvatureconstraints
[11. Thegeneralizationto gravity is thenpresented,andthe minimal multiplet
andobservablesareobtained[2]. We go on to showhow thesetheoriesnatu-
rally leadoneto a uniformizationapproachto variousmoduli spaces.While the
action for thesemodelsdescribesflat Riemannianconnections,the theoryalso
containsa differential form of co-degreetwo which canbe usedto introduce
curvaturesingularitieson codimensiontwo subspaces.Thesepunctureopera-
tors areessentiallyWilsonlines for theoriesin threedimensions,andgeneralize
to Wilson “surfaces” in four dimensions.The relevantdiffeomorphismgroup
in thesetheoriesis one which fixes the tangentspaceon the punctures.This
approach,which is entirelysuggestedby the continuumfield theory,hintsat a
stronglink with Reggecalculus [251,andwepresentsomespeculativeremarks
in this direction.The uniformizationapproachto cohomologicalgaugetheory
is alsobriefly discussed.
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2. Bundle of frames on superspace

We will be interestedin constructingrealizationsof a certainsupersymmetry
algebra,andherewe will appealto superspacetechniques.The advantageof
this approachis that supersymmetrytransformationscan thenbe interpretedas
generalcoordinatetransformationsof an underlyingsupermanifold.The case
at handdictatesthatour superspacebe locally parametrizedby the coordinates

(x~L,O~,0), wherex~is usedto denotethe Grassmannevencoordinates,
while

0a denotesan equalnumberof odd coordinatesand0 is reservedfor an
additionalodd BRSTcoordinate.Notice that we uselower caseGreekindices
from thebeginningofthealphabetto label theoddcoordinates,while thosefrom
the middle label the evendirections;a capital Greekindex denotesgenerically
anyof the coordinates.

Overa supermanifold,we can considera bundleof orthonormalframesby
analogywith the familiar constructionin conventionalgeometry[24]. We let

= dz” h~denotesuch a frame which clearly generalizesthe notion of
vielbein. Thestructuregroupof thisbundleis theLorentzgroup,andwhile the
formal aspectsof the theory are independentof the metric signature,we will
mainlybe interestedin the Euclideancaseof 0(n), wheren is the numberof
evencoordinates.An indexA,, B,,... is usedto denotethehorizontaldirections
in the bundle,andobjectswith theselabelstransformin definite representations
of the structuregroup,

DAOhAI =fA~~lhBt, (1)

whereDA0 is a generatorandsatisfiesthe Lie algebra

[DAO,DBO] = fB~°,~ODco. (2)

We will usea lower caseLatin index from the beginning of the alphabetto
denotean odd “flat” direction, and thosenearthe middle (i,j,k,...) for an
even direction. Notice also that the A0 subscriptlabelsvertical directionsin
the bundle.As in supergravity,the evenlabels transformas vectorsunder the
Lorentzgroup,f~’1= = ~~~T~S]J• However,insteadof the h” transforming
as spinors,we will require them to also transformas vectors.This is simply
becausewe seekto realizea Grassmannodd vectorsymmetry.

We will also needto introduceaspin connectionin this bundle,which we
denotein local coordinatesby h~0,andform the covariantderivative

= — h~,°DA0. (3)

The spin connection,togetherwith the frame fields, allows us to define both
curvatureandtorsion,andin our conventionstakethe form

[DA,D~} = —R~DA0, (4)

T,~= DAh~’— (—l)’~D1h~’. (5)
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It is straightforwardto incorporatea Yang—Mills connectioninto this picture
andconsiderabundlewhosestructuregroupis aproductof 0(n) with acompact
groupG. In this case,the label A0 will denoteboth of theverticaldirections,and
whenwe needto specifymore precisely,we will useA0 = [rs] whenreferring
to a 0(n) direction,andI, J, K,... for the group G. It is also conventionalto
denotethe spin andYang—Mills connectionsrespectivelyby h~[~= w~ and
h~= A~,andR~= FA’x for the Yang—Mills curvature.

The supervielbeinalsoallows oneto relateobjectswith curvedandflat indices
(notethat we reserve0 for a flat BRST index),

DA = h~’DA1= h~D1+ h~Da+ h~D0,

RAO — (l\BIEhB!hC!RAO
— ‘ / A 1 B1C1’

T/~1 — (l\BIEhB!hCITA! 6Al — ‘ ‘ A I B1C1’

andthe entire algebraicpicturecan be cast very compactlyas

[DA,DB} = F~Dc, (7)

where FB~ = T~’A F1~°~,= R~OAF’A = f11~,, and so on.
The Bianchi identitiesfollow from the superJacobiidentity which represents

the associativity of the differentialoperators,andwith theseconventionsthey
takethe form

o = ~ (_l) Bl[DAT — T~’ATJ~’I~ + R~0Af~],

(cyclic)

o = ~ (_l)~
4~![DAjR~(.— T~AR~OE]. (8)

(cyclic)

The sumhereis overthe threecyclic permutationsof the lower indices.
The convenienceof this wholeapproachis really encodedin the transforma-

tion propertiesof the fields we haveintroduced;everythingis basedon general
coordinateand tangentframe rotations in the superspace.For example,con-
siderageneralcoordinatetransformationon thetangentframe;thecomponents
transformsimply as

h~’(z’) = ~~h~(z). (9)

In its infinitesimal form, wherez1 = + ~, we havethe equally familiar
expression

= h~(z)_h~(z)

= + (OAf1)h~. (10)

It will be convenientto rewritethe transformationsof the fields in termsof an
equivalentsetof parameters.If we define ~ = fEh~! then it follows simply
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from our definitions that the abovegeneralcoordinatetransformationcan be

written as

ô h~’= DA�
4’ — f C! ~ + flW~0 J~j~h~. (11)

Notice that the last term herehasthe form of a local framerotationwith param-
eter ~ If we now redefinethe parameterfor local framerotationsby

~ ~Ao — CIW~0, (12)

wecanthenwrite the completetransformationpropertiesof the tangentframe

as

öh~ =DAf_h~tfCF~~. (13)

The transformationpropertiesof the spin connectionfollow in a similar way,

andwe canrepresentthe algebraof all the local symmetriesin the theoryin the
very compactform

=

= �EDFA (14)

Note that A,B,... with no subscriptdenoteseithera vertical or horizontaldi-
rection.

The gravitino field h~is sometimesmore conventionallydenotedby ii’~. The
spin connectionof course entersinto the algebra (14), however, it is not an
independentfield as it cangenericallybe expressedin termsof the vielbein and
the torsioncomponentT~,. In our constructionof vectorsupergravity,this tor-
sion componentwill vanish,andwe will effectivelybe consideringRiemannian
connections.

The superspacewe haveconstructedhere mirrors the standardformulation

used in conventionalsupergravity [26,27]. Other essentiallyequivalent ap-
proachescan be found in numerousbooks dealing with supergravity,e.g. ref.
[28], andone will be ableto quickly reproduceour resultsin any of thesesys-
tems.

3. Cohomologicalgaugetheory

In cohomologicalgaugetheory, it wasknown that a certainset of fields, to-

getherwith their BRST transformations,formed a basis for the theory [5]. A
geometricalunderstandingofthesefields finds anaturalplacewithin the univer-
sal bundleconstructionof Atiyah andSinger [18]; this wasobservedby several
groups[19—22]. In addition, it wasshownthatavectorsupersymmetryoperator
playedan important role in thesemodels [1,3]. Theterm vectorsupersymme-
try simply indicatesthat the infinitesimal parameterin the transformations(or
equivalentlytheoperatorwhichgeneratesthesetransformations)is aGrassmann
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odd vector.The aim hereis to showhow thesefields, andtheir transformations,

canbe encodedin the superconnectionformalism. Whenphrasedas a problem
in superspace,thetask is to find acovariantsolutionto the Bianchi identitiesof
the previoussection.Indeed,we shall find that the basicset of fields furnishes
a realizationof the global BRST-SUSYalgebra.

To begin,let usspecifythe BRST symmetrytransformations;we have [5]

=

=

= 0. (15)

The statisticsand ghostnumbersof (An,w~,/i) are given by (+, —, +) and
(0,1,2), respectively.It is an easytask to verify that the correspondingalgebra
closesup to a Yang—Mills gaugetransformationwith parameter~, that is,

E5 I I \1 II

I°BRST ~ !, OBRST~�2) j = OYMt.t~ = ~l ~ ). (16)
In addition, we canalso definethe following vectorsupersymmetrytransfor-

mations [1]:

= 0,
= ~a~5Jf~J.

= 2�’~wJ. (17)

The resultingalgebratakesthe form

[ósusY(�°),~
5BRsT(c)I = ÔDIFF(E’ =

[ósusy(f~),~susy(�~)] = 0. (18)

It is clearat this point that the entireformalism is covariantwith respectto the

Yang—Mills gaugesymmetry.Constructionssuchas this, wherethe BRST oper-
atoris nilpotentup to a certaingaugetransformation,arecalled“equivariant”.

Our task is thereforeto establishwhetherthis algebracan be embeddedin the
superconnectionframeworkthat wasdescribedearlier.

Sincethe symmetrieson hand are of a global nature (both � and
1a being

constant),we initiate our searchby demandingthat the vielbein describesa flat
geometry,h~= ô,~.Furthermore,the potential gaugefields for the SUSY and
BRSTsymmetriesaretakento betrivial, h~= 0, h~°= 0. It remainstodetermine
theappropriatesetofcurvatureandtorsionconstraints.Thefundamentaltorsion
constraintsareimmediatelyspecifiedby thealgebraof interest,namely(16) and
(18), andwethus find only one non-vanishingcomponent

T~0= ~. (19)

This is analogousto the fundamentaltorsionconstraintT~h= in standard
supersymmetry,wherethe lower indicesheredenotespinordirections.Equation
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(16) alsodictatesthe curvatureconstraint,

FJ0 ç5’. (20)

Finally, re-writing (15) for the Yang—Mills connectionin the form (14),

= D11�’ — h~�F,’0— h~�aF/0— h~�’F~!;, (21)

one finds the remainingcurvatureconstraint,

F0
1, = yif. (22)

All othercurvaturecomponents(apartfrom ft,) arezero.
The consistencyof this set can now be verified through an analysisof the

Bianchi identities (8). In particular,we havethe following non-trivial identities

(0/I)’ : 0 = D
0F,’1 + D[,Fj]0,

(aij)’ : 0 = Daf~’j,

(00/)~: 0 = 2D0F~+ D,FJ0,

‘0~ \1. fl — fl f~I ‘~IJ~’J— a 00+ a 10’

(Oai)’: 0 = DaFj~+

(000)’: 0 = D0F,9’0. (23)

It is straightforwardto checkthat (23) reproducesthetransformationsandalge-

bra of the fundamentalfields (An,Wi, ç
5) given above.We havethus succeeded

in obtaininga covariantsolution to the superconnectionformalism.
Oneof the most importantfeaturesof cohomologicalgaugetheory is the con-

structionof a family of metricindependentobservables.Sincethe algebraabove
is equivariantwith respectto Yang—Mills symmetry,theseobservablesaregiven
by BRST invariant, andYang—Mills invariant functionalsof the minimal mul-
tiplet of fields. From (1 5), we seethat the field q~is itself BRST invariant, and
the first observableis formedby taking, for example [5],

= ~-trç~2= ~trF1
0, (24)

wherethe superscriptindicatesthat it is a zero-formof ghostnumberfour, and

the traceis the usual Yang—Mills trace.Given this initial observable,onecan
constructan entire hierarchyof observablesby successiveapplicationsof the
vector supersymmetryoperator [1,3,29]. To this end,onenotes that the latter

connectssuccessivecomponentsof curvaturein the following manner[I]:

ôsusy:Foo—*Foe--~Fe1—+0. (25)

Indeed,asaone-formwith ghostnumber— 1, it is naturallydesignedfor thispur-

pose.A tower of differential form operatorsis obtainedby repeatedapplication
of ôsusy:
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= 2trF01F00,

= 4tr(Fo,F01.+ ~F00F11),

= 4tr(Fo~[~k+ F01Ft, + FOkFIJ),

= 4tr(F1~F~1 + FIkF/J + Fj/Fjk). (26)

To actuallyconstructtheobservables,oneintegrateseachof theseformsoveran
appropriate homology cycle on the manifold M. The verification that they are
BRST invariant, and dependonly on the chosenhomologyclass,follows from

a set of descentequations.We defer a discussionof thesepoints to section5,
whereboth the gaugeandgravity casescan betreatedsimultaneously.

Aswehaveseen,therearethreenon-vanishingcomponentsof curvaturein the
superspace(x”, 0~,0), namely, (F00,F01,F~).Clearly, the sum of thesethree
piecesrepresentstheentirecurvature,F, of superspace,andhenceonecanform
a characteristicclassTr F

2, for example.By construction,the Bianchi identities
ensurethat this object is a closedfour-form. Furthermore,oneseesthat thesum
of (24) and (26) is equalto this class.In this way, one obtainsa geometrical
understandingof the fields andobservablesin cohomologicalgaugetheory. In-
deed,the superspacecurvatureis preciselythecurvatureof the universalbundle
of Atiyah andSinger,whoseconstructionwenow briefly review.

Given a principal bundleP, with structuregroupG, overa compactsmooth
manifold M, onecan considerthe affine spaceA of all connectionson P. This
spaceis actedon by the group ~ of pointed gaugetransformations,and leads
oneto the principal c-bundleP >< A over Q = (P >< A)/c. SinceG acts freely
on the baseQ of this bufldle, the following triplet

= ((P x A)/c,G,Q/G = Mx A/c), (27)

definesthe so-called‘universal’ G-bundleover the basespaceM x A/c.
Now, differential formson M xA/~carry a naturalbi-grading,a (p, q )-form

referringto ap-form on M anda q-form on A/c. Previously,we haveusedthe
term ‘ghost number’ for the q degree.The connectionon the universalbundle
can, therefore,locally be written as

A= A(l,o) + A(
0,I). (28)

Similarly, the universal curvature, being a two-form, decomposes as

= (d + ~BRsT)A+ ~[~A]

= F(2,o) + F(l.l) + T(02), (29)

whered is the usual exteriorderivativeon M, and ÔBRST its (0, 1) counterpart.
It is clearthat the componentsof the universalcurvaturehavethecorrectdegree
in order to allow them to be identified with the (F~1,F01,F00)componentsof
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the superspace curvature. In addition, the covariant solution of the superspace
Bianchi identitiesdictatespreciselythe threenon-vanishingcomponentsof the
universalcurvature.As a final remark,wenote that in principleonecanconsider
highercharacteristicclasses,although for technicalreasonsthey havethus far
not beenusedin cohomologicalgaugetheory.

By construction,theparameterin thevectorsupersymmetrytransformationsis

aconstantvector.Therefore,if wewishto definethisasa symmetryof thetheory
on a generalmanifold, weencounterthe integrability constraint: [D~,,Dc ]~A=

~ = 0. Solutionsto this constraintare provided in caseswhere either
the Riemanncurvaturevanishes,or haszeromodes.The (rigid) validity of the
vectorsupersymmetryis thusrestrictedto certainmanifolds.The naturalwayto
overcomethis integrability constraintis to localize the vectorsupersymmetry.
Ouraim will be to first constructa theoryof vectorsupergravity,andwe shall
then find that the coupling to the gaugesystemfollows unhindered.

4. Cohomologicalgravity

In order to constructa theoryof vectorsupergravity,one beginsby allowing
thevielbeinh~,anditsgravitinoh~°= to bearbitrary;in thepresentanalysis,
we are maintainingthe triviality of the BRST gaugefield (h1~°= 0). Including

the gravitino correspondsto localizing the vector supersymmetry,and hence
leadsoneto a theoryofvectorsupergravity.Thecrucial stepis thento decideon

an appropriateset of covarianttorsionconstraints.Themostpromisingroadto
take,andthe onewhich yields thepresentsolution,is to discardall extratorsion
componentswhich havenegativeor zeroghostnumber.We do, however,retain
the T,~0piece, in order to retrievethe global result in the limit of flat vielbein
andvanishinggravitino.We shouldstressthat the specificationof thesetorsion
constraintsdictatesthe additional fields which are requiredto completethe
vectorsupergravitymultiplet. Unlike the caseof gaugetheory, herewe do not
know thebasicmultiplet,andsomenimblefootwork is neededin orderto obtain
a consistentfield content.As it turns out, it is alsopossibleto set to zero thefive
componentsT~0,T~°0,T~0,TJ0, and I~,andwe will do so in the following. In
ref. [2], anothernon-minimalsolution to the Bianchi identitieswaspresented
which incorporatedT0

1
0 and T~0as independentfields, and one can consider

this largersetof fields as acouplingof a new multiplet to the minimal multiplet.
Sincetheobservablesin this extendedmultiplet areunclear,wewill notconsider
it here.

Without furtherado, let uspresentthe non-vanishingtorsioncomponents[2]:

Ta’& = 7~’Ii = ~ ~ (30)

whereçb1~is antisymmetricin its indices,that is, it correspondsto a scalarfield
in the adjoint representationof the Lorentz group. It shouldbe notedthat the
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final componentin this set,T~,is notanindependentfield, andcanbeexpressed
in termsof derivativesof the gravitino. A slight noteof warningis required in
the useof (30); the i anda indiceslabel different spacesandthuscautionmust
be exercisedaccordingly.

At thisjuncture,onemustsimply analyzetheresultingsetof Bianchi identities.

Onecanregardthis formalism asproviding abootstrapapproachto obtaininga
solution.Giventheabovetorsionconstraints,oneexamineseachof theidentities
in turn, andchecksfor consistency.The non-trivial identitiesare

(abi)’ : 0 = Rab’ j~

(a0i)’ : 0 = Raü’ j’

(aij)k : 0 = Raiikji,

In. — R k — T’~ ~k\ lJj — 0[i 11 ii a’

(00/)’: 0 = 2T,~~+R00’,,

(OOa)b: 0 = ~~5~ô~R00’,+ 2T~~,

(00i)a: 0 = D0T,’~,

(a9i)b : 0 = Da7~+ 5j’I5~R01 k — ~a T1~’

0 = DoTf~ + D11~10,

(aij)b: 0 = DaTt +~c5,~Riikpn. (31)

In addition, onefinds the non-zerocomponentsof curvature(besidesR11
1~) to

be
R

00rS = ,./,rs R01Fs = ~ (ôiaT,~,~— óa[jTka]i )ôJ~ô~ (32)

The transformationsof the minimal multiplet aregiven by

=

=

~rs = 2�aô.~R01l~. (33)

Although the torsion and curvaturecomponentsT~,R01.TS, and RIJrS are not
independentfields, their transformationsare simpleexpressions,andwe record
them here:

= _~�D[j~5J]kók0 — EbR.rSÔa~5Sb

~p rs — 1 fl,,~rs — aojRrs
01 — ‘‘P a

= —fD11R11~, (34)

wherethelattertwo areobtainedfrom the (00iY~,(aOl)rS (0iI)r3 (alj)rs iden-

tities in (8). Finally, onecanreadoff thetransformationof the spinconnection
from (14):
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öwrs = —ch~R10rs (35)

Onecan now checkthat the abovemultiplet of fields (h,,~ ~rs~ providesa
representationfor a BRST-SUSYalgebra,with the following closureproperties:

[ôSusy(~),
5BRST(E)] = ÔDLFF(�’ =

[~BRsT(~l),~5BRsT(�2)] = ôLorentz(�S= _f,f

21/,rs)

r.c i a~ .~ ~ b
LUSUSY~ELJ,USUSYkC2 =

In the above,we haveonly listedthe essentialpartof the algebra;however,given
the full set of torsion and curvatureconstraints,we can readoff the complete
algebrafrom (7). In thelargernon-minimalmultiplet thatwe discussedearlier,
onefinds that theBRST-BRSTcommutatoralsocontainsadiffeomorphismand
a local supersymmetrytransformationon the right handside,andthis ruins the
simpleobservablestructureof the presenttheory.

We havethussucceededin constructinga multiplet for vector supergravity.
Sincethe solution involvesa localizationof a vectorsupersymmetry,oneis nat-

urally led to include a vector gravitino ~ which then appearsas the BRST
topological shift partnerfor the vielbein. We arenot treatingthe spin connec-
tion as an independentfield; it can be written in terms of derivativesof the
vielbein and its inversein the ususalway by solving D[~ h~1= 0 for w~’.Sim-
ilarly, the BRST shift partnerto the spin connection,Ron, is not independent
and representsa deformationof the spin connectioninducedfrom a deforma-

tion in the vielbein. It is straightforwardto considerthe coupling of the above
gravity multiplet to the gaugemultiplet of the previoussection,therebytaking
the structuregroup to be a directproductof the Lorentzgroupandthe compact
group G. By consideringthe coupledBianchi identities,now allowing the index
A0 to run over [rs] andI, onefinds that the transformationsof the gaugemul-
tiplet are unaltered.The only changein the algebrais that one addsthe term

~YM (~1 = —�1~2’~”)to the abovecommutatorof two BRST transformations.
In performingthis coupling, one overcomesthe integrability constraintwhich
appearedin the gaugetheorycase.

In the presenttheory, we againnotice that we havea BRST invariant field
~rS; hence,we canform the observable

= ~-tr~
2 = ~trR~

0, (37)

wherethe superscriptindicatesthat it is a zero-formof ghostnumberfour, and
the tracerepresentsan 0(n) trace.In the caseof 2D gravity, higherpowersof ~
do appear,but for convenience,we restrictour attention to the aboveexample.
As for the caseof gaugetheory, the vector supersymmetryoperatorconnects

successivecomponentsof curvature:

ósusy : R00 —* R01 —~ R~—i 0, (38)
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andwe arrive at the following assemblyof differential forms:
j47(l

3) = 2trR
01R00,

4 ( D D 1 0 0
= -~ trti~,ix~1+ ~“00”-ij

~3,1) = 4tr(ROIR1k + ROIRk, + ROkRII),

= 4tr(R11R~1+ R/kR/I + R11R1t). (39)

It is straightforwardto re-write theseexpressionswith eithercurved indices,or
in differential form notation.

As before,one canconstructa characteristicclassby forming trR
2, where R

representsthe entirecurvatureof superspace,which in the presentcaseconsists

of threenon-vanishingcomponents,R
00,R01,R,1. By construction,the Bianchi

identitiesensurethat this object is a closedfour-form. In ref. [18] (see also ref.
[30] ), the extensionof the universalbundleprogramto the spaceof metricswas
outlined,andthe curvatureof the superspaceaboverepresentsthe curvatureof
this universalbundle.Finally, let usremarkthat analternativesetof observables
presentsitself in four dimensions.Using the SO(4) invariant tensorE,nnrs,we

canform the SO(4) invariant operator

= ~�mnrsc/~mI7~. (40)

Proceedingas before, onegeneratesa new hierarchyof operators,with the top
form being given by the Eulerclass,�“~RjJRk/.

5. Observableshierarchies from vector supersymmetry

It hasbeenknown for sometime that BRST invarianceplays an important
role in topological field theory [19,31,32,20]; indeed, the observablesin coho-
mological modelscorrespondto BRSTcohomologyclasses,i.e., operatorswhich
areBRST-closed,modulo thosewhichare BRST-exact[5]. The observablesare
definedvia a set of operatorsW~ (/ = 0 n), which satisfy the following
descentequations:

Q (0)

BRST =

QBRSTW~
1~= dW~°~,

QBRSTW~~~=

0 = dW~”~, (41)

whereóBRST = EQBRST. Here,/ denotesthe differential form degree,andd is
the exterior derivativeon M; we shall omit the ghostnumberlabelling on the
operators.As a consequenceof thesedefining relations,onecannow constructa
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set of observablesby integratingeachof the operatorsWt’~overan appropriate
homologycycley~,on M. Defining

W(y,) = fww, (42)

we seethat it is BRST invariantas a resultof (41):

QBRSTW(YE) = /dw’’1 =f w~’~= 0. (43)

Furthermore,asimplecheckrevealsthateachoftheseobservablesdependsonly
on the homology classof y,. Integratingoveraboundary,we find

W(0y(
1~l)) = f W~’~= / dW~= QBRST f ~ (44)

andhencethis object is BRST trivial. In practice, theabovehierarchyof equa-
tionsis initiatedby choosinga BRSTinvariantoperator~ However,onemay
wonderwhetherthe ensuingrelationsin this hierarchyare merelyfortuitous,or

whetherthey area result of somemore fundamentalpropertyof cohomological
field theory.

Let usbeginby recallingtheessentialrelationsin the BRST-SUSYalgebra:

{D0,Da} = ó,~D,, (45)

[Da,Di] = 0, (46)

{Da,Db} = 0, (47)

{Do,Do} = R~°DCO. (48)

Considera BRST invariantobject W
t0~D

0W~°
1= 0, which is alsocovariant

with respectto 0(n) rotations,andgaugetransformations.The superscriptin-

dicatesthe differential form degree;however, in the following we shallpresent
our resultsin termsof components.We define

= DaWt0~, ft(l) = ~2Wa(l). (49)

If we now act on LV~°~with (45) we obtain the following result:

D
0W,/~= D1W~°~. (50)

It is immediatelyevidentthat sucha relation is preciselythe secondstepin the
hierarchyof (41). The reasonthe covariant derivative D appears,ratherthan
the exterior derivative as in (41), is simply becauseour presentdiscussionis
more general.We are first consideringcovariantobjects W

t’~for the purposes
of constructingobservablesonethen specializesto objectswhich are invariant
with respectto 0(n) rotations,andYang—Mills transformations.We thus con-
clude that such a pattern is not simply a twist of good fortune, but is a direct
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consequenceof the underlyingvectorsupersymmetryalgebra [31.This analysis
canbe continued,andoneverifies that the constructionof the entirehierarchy
(41) is basedsolelyon the threerelations(45)—(47). The kth level is obtained

by defining

~k)
—

aI’ak — ai a2-ak,

W(k) = . . . o9k Wa~ak, (51)

andusing (45)—(47) onefinds
DOW,(k)I = (k- l)!Dl~i]. (52)

For the purposeof illumination, we havechosento endowtheobjectsWwith
flat indices.It is quite straightforwardto adoptacurvedindexnotation,or write
theseobjectsasdifferentialforms. For example,let usdefine

= ~ (53)

A little extracareis neededhere as the operatorsD0, Da do not represent the

symmetrieswhenactingon non-covariantobjectssuchasthe vielbeinh~. In this
case, one uses the relation (36), andactingon ~ onefinds

QBRSTI4
2~= D~W~°~= (0~~— W~[~Drs A~D,)Wt0~. (54)

Similarly, the general result is given by

QBRSTH~~Pk= (k l)!D~,
2~t,kl. (55)

The abovederivationof the descentequationswhich definea cohomological
field .theory clearly demonstratesthat they havetheir origin in the vectorsuper-
symmetry algebra.The knowledgethat BRST plays a role in thesetheoriesis
not a sufficient guarantee for this structure. As we have seen, the BRSToperator
is nilpotent up to local 0(n) rotations,andYang—Mills gaugetransformations.
In orderto constructan observable,onemust thereforeensurethat the objects
W are invariant with respectto theselocal symmetries.In practice, this simply
involvestaking an appropriategroup trace.

6. Field theoreticrealizationof a universalbundle for gravity

In orderto constructa quantumactionSq, we can proceedin the usualway
andtakethe Lagrangianto be BRST exact [5], namely

Sq = / QBRST V, (56)

whereV is a Lorentz invariant functionalwhichcomprisesa sumof termsof the
form ant/ghost(gaugefixing condition). This action is evidently invariant under
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BRST, since, from (36), the BRST operatorcloses up to a Lorentz rotation.
It is at this point that we must decide on a moduli spaceof interest,and the
specificationof this spacecorrespondsto one of the gaugefixing conditions,
which we shallreferto asthe topologicalgaugefixing. Fromthedefinition of the
observablesgiven above,a standardargumentrevealsthat they correspondto
cohomologyclasseson the moduli space,denotedby M. In particular,a BRST
invariant observable W~’4’~reducesto a closedform on M of degree(4 — i).
The vacuumexpectationof a productof observablesthenhasan interpretation

asan intersectionnumberon M, for detailssee refs. [33,34].
Thespaceofinteresthereis givenby the flat connections,R

0~= 0. Of course,

compactmanifoldswhichadmit flat connectionsin theeuclideancasearerather
rare,andwewill latermodify this choiceby introducingcurvaturesingularities.
The otherconditionthat we needto imposeat this point is perhapsmore sub-
tle [4]. If we considerthe transformationof the spin connectionunder the
combinedshift and local Lorentz symmetries(see (14)),

= �R0
5 + DE~, (57)

we seethat somedeformationsin the vielbein lead to trivial deformationsin
the connection, in the sense that they can be absorbed into a Lorentz gauge
transformation.If we imposethe constraint

= 0 (58)

on all suchdeformations,then — in the absenceof zeromodesof the Laplacian
whenactingon scalarsin the adjoint representation— we eliminatethesetrivial

deformations. Since there is a one-to-one correspondence between scalars in
the adjoint representationand two-forms, namely çb~ h~,hI,çIt~,the Hodge
theorem shows that the number of such zero modesis equalto the dimension of
thesecondcohomologygroupH2 (M, EIfl. Here,D~is thefull covariantderivative
definedwith respectto the spin andChristoffel connectionsby

= D~X/— (O,,’JXV~— F~VX~, (59)

andthe curvaturecomponentsaregiven by

= h~h,’
1R11”, R0~Is= h~R0/s. (60)

Although we are not dealingwith a theoryof an independentspin connection,
we are, nevertheless,interestedin somemoduli spaceof Riemannianconnec-

tions. While the aboveconditionsare clearly motivatedby the constructionof
topologicalgaugetheory, therearecrucial differenceshere whichsimply reflect
the fact that in Riemanniangeometryone constructsthe connectionfrom the
vielbein (or equivalently,the metric).

To illuminate the structureof this action, we require a little morearmoury.
It is straightforwardto derive the following BRST-SUSYtransformations,see
(33) and(34):
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rs — I D ~,rs ~ rs
— ~ pY — ~ a ‘, p~

= DRrS (61)

In addition, we have

= ~ =

= ihfh~1R0~”+ c(D~W,~’)ó,~h°, (62)

where the final transformation is obtained by studyingthe condition for covari-

antconstancyof thevielbein,namely:D0h,’, = 0. We recordthe BRSTvariation
of the constraint DPRo~for future reference,

QBRST(D0RO”~’) = ~2~~rs — R00
t~~

0oP~~frnh[pq1—

+ R01 r~5~DP~ti + h°’ô,•0g’~ W~D(~R,~. (63)

Let us now concentrateour attentionon a specific model. In two dimensions,

the vector representation of S0(2) is reducible,sowe haveautomaticallyN =

2 (the numberof gravitinos) vector supergravity.In the presentinstance,we

chooseV to be:
V = ~“XRpc + ~c~DpR0~i, (64)

andthereforewe havemanifestinvariancewith respectto Lorentz rotations,and
diffeomorphisms. The symmetriesof the minimal multiplet have already been
given, andwe needonly specify the transformationsof the antighosts(,~,ç

5).
and their multipliers, which we denoteby (B,tj). Thesetransformationsmust
be such that they obey the closure properties of the BRST-SUSYalgebra, and
guaranteethat the action is invariant undervectorsupersymmetry.This can be
achieved, and one set is as follows:

= E

=

= EB+ i~aóifJD/(/)

= falji (D
1~— -�1

1D
1t1). (65)

For convenience, we have presented the above transformations in flat indices;
we note that the flat and curved epsilon symbols are generally related by

det[h~]�uh’2 = E0lP2h~h’2.~ (66)

The SUSYtransformationsof~and ~ weredeterminedby requiring V to trans-
form as a totalderivativeunderthat symmetry,andthe othersarethen fixed by
closureof the original algebra.

Expanding (56), we obtain
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Sq = /[�“~(BR0~ + xbE0R~1o)+ ~ (i~+

+ ~ D
2ç5—R

0~h~T~,~+ R01ó,~ui”yi~°+ ~

(67)

The first point to notehereis that the expansionof the topologicalgaugefixing
condition generatesthe secondterm in (67). One then noticesthat R00 itself
behavesas agaugefield, andthusrequiresgaugefixing. This is effectedby the
secondgaugefixing in (64).

In orderto proceedin dimensionsgreaterthat two, onesimply replacesx and
B by (n — 2)-forms.However, for certainpurposesit is convenientto introduce
the associatedtensordensitiesB” andi””, definedas follows:

B~1P2= c/hP2P3P~B •p,,

J01P2 = ~ (68)

The form of the quantumactionwhich is genericto all dimensionsis given by

the actionof QBRST on

V = tr(~””R~~+ V/~q~D~R0”), (69)andagainwe havemanifest invariance with respect to bothLorentz rotations,
and diffeomorphisms.However, invarianceunder vector supersymmetryre-
quires a little extra attention,but can be achievedwith the following set of
transformations:

= H7,

= —~[c~,c~’] ~

= 1~P”+

= [~/‘~2””]— �05ihEP(DA.id]2 + ~/~Y”
1), (70)

where

= D,~,ij + [R
0~, çb] — ~ + ~ — hp1~~ô~fi’~. (71)

Forthe caseof threedimensions,we find

= /tr{cP””(BpRpv + X~b[~R~]O)+ ~ (~ +

+ v~c~(3~D
2/+ [R

0~,R0”] — R0”h~’Ô~T~~+ Ro4,~,D”y,~’

vA a~
+ ~ a’~ W~ (~ v)O

(72)

wherewe note the presenceof the extracommutatorterm in R0~.
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One featurethat ariseshere (andin all dimensionsgreaterthan two) is that
thex andB fields possesstheir own local symmetries;in the case at hand, one
finds that 5q is invariant under

= ~ ÔB,, = D~A~°~+ [R
0~,AW], (73)

whereA~°~andA~
1~are even and odd transformation parameters in the adjoint

representation of the Lorentz group. The closure of thealgebraon the.~ andB~
fields canbeperformed,andoneagainverifiesthe off-shellnatureof this algebra.
We simply note that the [c5susy,ÔBRSTI commutatordefinesa diffeomorphism
of thesefields, andthe remainingalgebraproceedsobediently.

We cannow makedirect contact with the universal bundlefor gravity. Inde-

pendentof the particulardimension,we seethat the q~equationof motionasserts
that the ~ componentof the curvatureassumesits expectednon-localform:

— ~ 2 ~l j mi ppq ç[rS} prs

1,,,i i a

‘P — — ‘~ “ ‘ Op 0 J~lm][pq~— 0 ‘1 a pv

+ R01.
T~5~D”yi~+ hPlôj~gVAy~D(pR~)~). (74)

Furthermore,the middle componentR
0~also obeysthe necessary horizontality

condition,D~R0”= 0. This showsthat the abovecohomologicalgravity theory
providesa field theoreticrepresentation[4] of a universalbundlefor gravity in

any dimension[18,30].
It wasobservedin ref. [29] thatas a consequenceof the form of the quantum

action in (56), the theorynaturallycontainsa vector supersymmetryoperator.
The energy—momentumtensorobtainedfrom Sq hasthe form

Ta,, = {QBRST, ~ (75)

Defining the momentumoperatorP,,, and its BRST partner fr~,by integrating
T0~and V0~over appropriate spacelike hypersurfaces, oneobtainsthe algebra:

P~= {QBRST,~}. (76)

Clearly,we canidentify V,, as thevectorsupersymmetryoperator,andthe above
argumentindicatesthat cohomologicaltheorieswill alwayscontainsucha sym-
metry. It wasalso shownin ref. [29] that thedescentequationsfollow asa result

of the defining relation (76).
Theapproachwe haveadoptedhereis to definecohomologicaltheoriesat the

algebraiclevel, independentof any particularmodel. Indeed,as we haveseen,
onecanobtaina realizationof theBRST-SUSYalgebraanddefineanobservable
hierarchy at this level, prior to the specification of any moduli space.

7. Uniformization approach to cohomologicalgravity

In performingthe topologicalgaugefixing, we restrictedourselvesto the con-
dition of flat curvature,Ru,. = 0. We wereableto imposethis conditionthrough
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the introductionof amultiplier field B, andthe resultingactionwasobservedto
have local supersymmetry. This same differential form B does, however, allow

us to introducecurvaturesingularitieson codimensiontwo submanifolds.This
pathwasalsoadoptedby VerlindeandVerlinde [23] in two dimensions.In this
way, vectorsupersymmetry,as well asdiffeomorphisms,arebrokenonly along
these punctures. It is important to stress that the algebra(36) is definedat the
equivariantlevel, in which the local symmetriesof Lorentz, diffeomorphisms,
andvector supersymmetryarestill manifest.Indeed,we shalladoptthe equiv-

ariantapproachas aguiding principle for defining the theory. As in any gauge
theory,one should be able to define the action, observables, and path integral

at this level, prior to the gaugefixing of the local symmetries.
For the caseof threedimensions,the punctureoperatorcorrespondsto a

Wilson loop definedby

WB(C) = trPexp/B, (77)

whereP denotesthe pathordering,andC is a closedone-cycle.This operatoris

a solutionto the differential equation

(~+ M(t)) WB(t) = 0, (78)

where
M(t) = B~(x(t))*”(t). (79)

To obtain the Wilson loop in (77), we have chosen a closed path C, with x (0) =

x(2~r),andtakena Lorentztrace.Insertinga productof these operators in the
path integral measure leads to a modified equation of motion for the B field. We
find that the resultingmoduli spaceis given by flat Riemannianconnections,
with deltafunctionsingularitiesdefinedalongthe codimensiontwo punctures.
Onecanthusview the aboveanalysisas a uniformizationapproachto different
moduli spaces.The vacuumexpectationvaluesof the observablespresentedin
section5 will thencorrespondto cohomologyclasseson thesemoduli spaces.
In dimensiongreaterthanthree,onenotesthat the punctureoperatorsbecome
Wilson “surfaces”.

Since we are working at the equivariantlevel, we must ensurethe BRST,
and Lorentz invarianceof the functional measure.The Wilson 1oop is clearly
invariantwith respectto the latter symmetry,while we see from (70) that it
is only BRST invariant if we restrict the ~ field to vanish along the loop C.
Specifically, we have the following formula for a general variation of the puncture
operator[35]:

ötrP exp/M(r)dz = /dt tr{ôM(t)W[2~,t]W[l,0]}, (80)
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where

W[b,a] = PexP/M(t)dt. (81)

From (70), the BRST variation is given by

QBRSTM(t) = —~[‘~‘,x~1.~”, (82)

and the simplestoption, andthe only one we will considerhere,is to demand
that c~vanishon C, in orderto achieveBRST invarianceof the punctureinser-
tion. Moreover,theverypresenceof thepunctureinsertionsdictatesthe relevant
diffeomorphismgroupof the theoryto beonewhich leavesfixed thesecodimen-
sion two submanifolds.As a result, the local vectorsupersymmetryis similarly
restricted,andone notesthat the local B, andhencex~symmetriesare also
brokenon the punctures.

The correlationfunctionsof the theoryaredefinedby

~ (83)

where~ denotesthe collectivefield content.In order to obtaina non-vanishing
result,onemustensurethat theghostnumberof thecorrelatorequalsthe dimen-
sion of the moduli spaceunder discussion(or equivalently,the ghostnumber
anomaly).The genericsituationin cohomologicalmodelsis onein which there
are ghostzero modes;this may result in a net ghostnumberviolation in the
pathintegralmeasure,andhenceto a ghostnumberanomaly.As we haveseen,
the observableshavepositiveghostnumber,andhencein the presenceof the
anomalyoneinsertsacollectionof observableswhosetotal ghostnumberequals
theanomaly.At thelevel of differentialformson moduli space.A4,thistranslates
into the conditionthat the totalghostnumberof theobservablebeequatedwith
the dimensionofM.

With this restrictionon the ~ field, we shouldre-examinethe 0- andone-form
observablesgiven above.It appearsthat the first observablebecomestrivial in
the presenceof punctureinsertions;this follows from the fact that as a result
of the descentequation(41), the observableis independentof its position, and
henceone can alwaysmove it to a point on the puncturewhere~ vanishes.
This simpleargumentassumes,of course,that thereareno subtletiesinvolved
in placing ~ on the punctures.However, the casefor the one-form ~ re-
quirescloserattention.In thisregard,we notethat the variationof W(C) with
respectto aninfinitesimalvariation of the loop is equalto a BRSTcommutator.
Explicitly, we have

d
~‘M(t) = ôx”(O~B~)x” + B0~—,~5x”, (84)
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andhence

ôW~(C) = /dt tr{(a1~B~1 + [B~,B,,])óx”*” W[2m,t]W[t,0]}

= QBRsT(/tr{DB[pXc]óxP*”W[2~~t]W[t~0]})~ (85)

wherethe latterstepis achievedby restrictingci to vanishon C. In the above, we
havedefineda ‘covariant’ derivativewith respecttoB, namely DBPX,J = OpXv+

[B0,~~]. This establishesthe fact that the puncture insertions are invariant

under small deformations of the loop. Nevertheless, it is possible to examine
the one-form observable for a homology cycle which is not homologous to the
punctureloop, and such an observablemay well be non-trivial. The issue of
whether there is a ghost number anomaly in three dimensions — which is essential
if one is to compute nonzero values for observables other than the partition
function - will be consideredin the next section along with the gaugetheory
construction.

It isworthmakingafew remarkson thesituationin two dimensions.Sincethe
rotationgroupin thiscaseis Abelian,the BRST operatoractingon a field in the
adjoint representation is nilpotent at the equivariant level. Consequently, the B
field is BRST invariant, (see (65)), and one does not encounter a restriction
on the ~ field; in addition, the puncture operators are independent of their
positions. Indeed, it has been shown that the zero-form operators do, in fact,
correspond to cohomology classes on the moduli space of punctured Riemann
surfaces[33,34,23].

Of course,in order to fully definethe path integral, one must proceedwith
the gaugefixing of all the local symmetries. This leads to a total BRST oper-

ator which is obtainedby replacing all the local parametersby the old BRST
parametere, timesthe correspondingghostfield. Onethen introducessuitable
gauge fixing conditions to break diffeomorphisms, frame rotations, and local
vector supersymmetry. In dimension greater than two, one must also break the
B andx local invariances.In this way, the action (67) or (72) is bedecked
with the full tapestry of ghost and multiplier fields. Suffice it to say at this point
thatthe entire field contentis suchthatto eachGrassmannevenfield, onehasa
Grassmannodd partnerof identicalfield type. In additionto thefields (h~, W~)~

and (ç~rs~’S~ onegenericallyrequiresthree sets of (ghost, antighost, mul-
tiplier) fields. Thesearegiven by (c’,~’,b’), (c”,c~,b”), (crS~jrSbrS) Respec-
tively, theseare presentfor the diffeomorphism,vector supersymmetry,and
local Lorentz invariances.Thus,oneseesthat thediffeomorphismghostscancel
againstthe supersymmetryghosts,while the Lorentz ghosts play host to the sec-
ondstageghosts(ci, c/i). Additionally, theghostsfor the B and,~symmetryform
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a supersymmetric set. It is clear that by gauge fixing all the local symmetries, one
will obtain a total BRST operator, Qtotai, which is nilpotent. One thenhas the
freedomto choosethe Lagrangianto be exactwith respectto eitherthe original

QBRST as in (56), or the completeQtotai~

We presentherethe Qtotal transformationsof the fundamentalmultiplet; this

can be read offfrom (33) and (14):

~‘i
i I a liz

P = Et ~c + a
11’p + c °jk”p

= ~(D
0c

2 —h~,T,’~+ c’T~h~,+ c’ô~h,W~),
= �(2c RO

1rS + c’D1çLf~ [ccijrs) (86)

Nilpotency thendictatesthe following ghosttransformations:

= f(_oLca + c”c1),

= ~{—~(ci+ [c,c])’~ — ckRokhi + ~cmcmR/m~~},

= � (—~ci”c, + ~ckcjROku1 + ~c~5Jhch). (87)

The conditionthat the symmetriesare brokenon the codimensiontwo punc-
turesis encodedin the path integral by restricting the relevantghost fields to
vanish along thesepunctures.It is worth remarking that oncethe full BRST

operatoris obtained,a newBRST invariant B field canbe constructed.This is
achieved by shifting the old B field by certain ghost terms. Therefore, having
fully gaugefixed the theory, one no longer seesthe restriction on the /i field,
nor on the diffeomorphismgroup.As mentionedpreviously,a necessaryconse-
quenceof the equivariantpoint of view is that in order to implementcurvature

singularities,one is forcedto restrictthe c
1 field on the punctures.

8. Uniformization approach to gauge theory

Having discussedthe uniformizationapproachto defining cohomological
gravity, it is useful to return to the gaugetheory situation.In particular, let us

examine a gauge theory in three dimensions; this model is known as a super-BF
system[36,22], andit hasbeenestablishedthat thepartition functionyields the
Cassoninvariant [36]. Let us first describethe generalfeaturesof this system;
the BRST-SUSYtransformationsareas follows [1]:

= �~~,öii’~= ~�D~ql+ �“F,,~,óc/i=

5c5 = �t7,15?7= —~�[ç5,~5]+ �“D~cl,5x~= �B~+

= —~�[ci,x~]— �“{Di~~~i+ ~�~,/(D~,
1 + [~~‘ c~1)}, (88)

whereWp = ó~W1,and �“ = ~~5/,e”. It is straightforwardto checkthe closureof

the associated algebra [11.
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The quantumaction for this theorycanbe written as [36,22]

/ QBRST tr(�”””~~F~~+ ~ (89)

which, upon expansion,becomes

Sq = / ~ [W~,W0])} (90)

It is easy to verify invariance with respect to global vector supersymmetry trans-
formations,while the BRSTsymmetry is manifest.In addition,onefinds invari-

ancewith respectto the following Bandx gaugetransformations:

= D~AW,ôB~= D~A~°~+ [wp,AW], (91)

where A~°~andA~’~are gaugeparametersin the adjoint representationof G.
It is worth noting the BRSY-SUSY algebracloseson x andB in the following
manner:

=

[1’Ssusy(f”),~BRsT(�)]Bp = ��“D~B~+ D~Le�”B~)+ [Wp,~~”Xv].

(92)
In other words, the SUSY-BRST commutator closes up to a translation and a
local B — x gaugetransformation.

The above field theory, like any other cohomological gauge theory based upon
this multiplet, provides a field theoretic representation of the universal bundle of
Atiyah andSinger [18]. Specifically, onenotesfrom the ci equationof motion
that the non-local structure of the ~ component of the universal curvature is
dictatedto be:

ci = _2(D2yI[~~,yjP]. (93)
In addition, the ~ equationof motion ensuresthat w obeysthe required hori-
zontality condition D = 0. These are exactly the formulae obtained in the

analysisof Atiyah andSinger.
In order to consider the observables in this theory, we note that the net ghost

number violation is zero. It appears therefore that any observable,beyondthe
partition function, vanishes.This feature arisesprecisely in threedimensions
becauseof the fact thatthe antighost~ is a one-formof ghostnumber— 1, and
satisfies the same equation as Wp. Therefore,the numberof w zero modes will
equal those of x. Furthermore,the multiplier fields enforcingthe gaugefixing of
both w andx will also have identical zero modes, and one finds that the ghost
numberanomalyis absent.

Onecanalso adoptthe uniformizationapproachto topologicalgaugetheory.
In three dimensions, the theory naturally providesa one-formfield B~in the
adjoint representation of G, and we can then consider the associated Wilson
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loop (77), with a G trace replacingthe Lorentz trace.As before, the presence
of this punctureoperatormodifies the moduli spaceconditionto be oneof flat
gauge connections, with curvaturesingularitiesdefinedalong the codimension
two punctures.We also seethat the BRST invarianceof the punctureoperator
requiresthe vanishingof ci’ along the loop C. As longas G is non-Abelian,this
will be the casein any dimension;additionally, the B andx local symmetries
will also be brokenon the punctures.

Unfortunately,it appearsthat the presenceof thesepuncturesdoesnot over-

cometheabsenceof aghostnumberanomaly.Sinceci vanisheson thepunctures,
andthex symmetryis also brokenthere,oneseesthat the gaugefixing for both
the w andx symmetryis identical, and hencetheir respectivemultiplier fields
will be restrictedin the sameway. Nevertheless,the partition function for the

caseof flat connectionswith singularitiesdefinedon codimensiontwo punctures
is certainlyworthy of attention.

Let usnote thatonecancompletetheidentificationwith the universalbundle

by performingthegaugefixing of theYang—Mills symmetry.Thetransformations
of the minimal multiplet now takethe form

= ~(w~+ D~c).

= �(~D,,ci—[c,yi~]) + e”F~~,

5ci = —�[c,ci] + 2~”Wp’ (94)

where c is the Yang—Mills ghost; nilpotency of the resulting BRST operator

specifiesthe following transformationfor this ghost:

= —~�(ci+ [c,c]) + �“A~. (95)

The algebrais now given by

[ösusy(�~),5BRsT(�)] = ��~lL)~. (96)

Once we haveintroducedthe ghostfield, we mustspecify its variation under
global vectorsupersymmetry,and in orderto achieveclosureof thealgebra,this
dictatesthe abovetransformation.The interestingpoint here is to notethat the
vector supersymmetryoperatorbehavesas a shift operatorconnectingthe two
componentsof the connectionof the universalbundle,see (28):

ósusy:c’A~O. (97)

Returningto the issueof the ghostnumberanomaly,wefind that the situation
in gravity is somewhatmoreinvolved, sinceR

0~is not an independentfield in
the theory.As we haveseen,it representsa deformationin the spin connection
which is consistentwith the no torsionconstraint.In addition,thegravitino Y,~is
thegaugefield for local supersymmetry,andthishasno counterpartin thesimple
gaugetheorysetting.Even in threedimensions,where and = ~ rsl

havethe sameindexstructure,thesetwo fields areof different geometricaltype.
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Theghostnumberanomalyin this formulationof cohomologicalgravityrequires
a more careful treatment, and we will not undertake that here.

9. Outlook

Wehavepresentedan algebraicfoundationfor bothcohomologicalgaugeand
gravity theories. The gauge theories are based on a certain global vector super-
symmetry,while local supersymmetryturns out to be the essentialingredient
in the gravity models.Ourconstructionis, moreover,genericto all dimensions.
Adopting a uniformizationapproach, where curvature singularities are imple-
mentedon codimensiontwo punctures,is naturalwithin this framework.

In the 3D gravity model, it would be interesting to develop the theory on
manifoldswith boundary.TheboundarycomponentsareRiemannsurfaces,and
one knows that here there are observables which correspond to the Mumford
invariants. The role of the three dimensional theory in interpolating between the
boundarycomponentsneedsto beelucidated.For3D gaugetheory, thepartition
function in the presenceof punctureinsertionshas not beenstudied.Whether
it representsan interestingextensionof the Cassoninvariant is anopenissue.

It is known that one can triangulateany manifold in such a way that the
Riemanncurvatureis everywherevanishing,exceptfor singularitiesdefinedon
submanifoldsof codimensiontwo. With thisknowledge,adiscreteReggeversion
of the theorymight be constructed.The fact that a form B, of co-degreetwo,
is naturally provided in the continuum cohomologicaltheory, suggeststhat it
maywell bepossibleto actuallycomputethe observablesof the theorythrougha
discreteReggeanalysis.An importantobservationin this regardis the fact that
all the fields in the cohomologicalmodelare differential forms,either evenor
odd,of varying degree.Moreover,oneseesthata “fermion” doublingproblem
will not arisefor theGrassmannoddforms [37]. Onemight envisageathorough
Reggeanalysisof thetwo dimensionalmodelwithout recourseto conformalfield
theory,or topologicalmethods[23,33,34]. Our primeconcernis, however,the
studyof cohomologicalgravity in higher dimensions,andthe formulationwe
havepresentedhereprovidesa foundationfor pursuingthis objective.

As an alternativeto theuniformizationapproachadoptedabove,onecanalso
constructinvariant actionsfor avariety of different moduli spaceconditions.
The detailsof this constructionare presentedin ref. [38], andthe important
point to note hereis that the actionspreserveall the symmetriespresentatthe
equivariantlevel. In particular,invariancewith respectto local vector super-
symmetrycanbe achievedby choosingthe constraintswhich definethe moduli
spaceandits deformationsto form asupersymmetricset.Modelsforfour dimen-
sionalself-dualgravity (R~4~= 0), andtwo dimensionalgravity with constant
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scalar curvature (R = A) aretreated,as well the moduli space of solutions to

the equation (D”R~~= 0), in anydimension.
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